光谱学与光谱分析 |
|
|
|
|
|
Detection of the Main Quality Indicators in Red Wine with Infrared Spectroscopy Based on FastICA and Neural Network |
FANG Li-min, LIN Min* |
College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China |
|
|
Abstract For the rapid detection of the ethanol, pH and rest sugar in red wine, infrared (IR) spectra of 44 wine samples were analyzed. The algorithm of fast independent component analysis (FastICA) was used to decompose the data of IR spectra, and their independent components and the mixing matrix were obtained. Then, the ICA-NNR calibration model with three-level artificial neural network (ANN) structure was built by using back-propagation (BP) algorithm. The models were used to estimate the contents of ethanol, pH and rest sugar in red wine samples for both in calibration set and predicted set. Correlation coefficient (r) of prediction and root mean square error of prediction (RMSEP) were used as the evaluation indexes. The results indicate that the r and RMSEP for the prediction of ethanol content, pH and rest sugar content are 0.953, 0.983 and 0.994, and 0.161, 0.017 and 0.181, respectively. The maximum relative deviations between the ICA-NNR method predicted value and referenced value of the 22 samples in predicted set are less than 4%. The results of this paper provide a foundation for the application and further development of IR on-line red wine analyzer.
|
Received: 2008-09-08
Accepted: 2008-12-10
|
|
Corresponding Authors:
LIN Min
E-mail: linm@cjlu.edu.cn
|
|
[1] YAN Yan-lu, ZHAO Long-lian, HAN Dong-hai, et al(严衍禄,赵龙莲,韩东海,等). Foundation of Near Infrared Spectroscopy and Its Application(近红外光谱分析基础与应用). Beijing: China Light Industry Press(北京:中国轻工业出版社), 2005. 1. [2] YU Hai-yan, YING Yi-bin, FU Xia-ping, et al(于海燕,应义斌,傅霞萍,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2007, 27(5): 920. [3] SHAO Yong-ni, HE Yong(邵咏妮,何 勇). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2006, 25(6): 478. [4] Hyvarinen A, Oja E. Neural Computation and Applications, 1997, 9(7): 1483. [5] Hyvarinen A, Oja E. Neural Networks A, 2000, 13(4-5): 411. [6] Hyvarinen A. IEEE Transactions on Neural Networks, 1999, 10(3): 626. [7] BI Xian, LI Tong-hua, WU Liang(毕 贤,李通化,吴 亮). Chemical Journal of Chinese Universities(高等学校化学学报), 2004, 25(6): 1023. [8] Chen J, Wang X Z. Journal of Chemical Information and Computer Sciences, 2001, 41: 992. [9] FANG Li-min, LIN Min(方利民,林 敏). Chinese Journal of Analytical Chemistry(分析化学), 2008, 36(6): 815. [10] Hahn S, Yoon G. Applied Optics, 2006, 45: 8374. [11] Thomas S, Davide B, Rasmus B. Analytical Chimica Acta, 2008, 615: 18. |
[1] |
LI Xin-ting, ZHANG Feng, FENG Jie*. Convolutional Neural Network Combined With Improved Spectral
Processing Method for Potato Disease Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 215-224. |
[2] |
LAN Yan1,WANG Wu1,XU Wen2,CHAI Qin-qin1*,LI Yu-rong1,ZHANG Xun2. Discrimination of Planting and Tissue-Cultured Anoectochilus Roxburghii Based on SMOTE and Inception-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 158-163. |
[3] |
LI Hu1, ZHONG Yun1, 2, FENG Ya-ting1, LIN Zhen1, ZHU Shi-jiang1, 2*. Multi-Vegetation Index Soil Moisture Inversion Model Based on UAV
Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 207-214. |
[4] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[5] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[6] |
YANG Qun1, 2, LING Qi-han1, WEI Yong1, NING Qiang1, 2, KONG Fa-ming1, ZHOU Yi-fan1, 2, ZHANG Hai-lin1, WANG Jie1, 2*. Non-Destructive Monitoring Model of Functional Nitrogen Content in
Citrus Leaves Based on Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3396-3403. |
[7] |
HUANG Meng-qiang1, KUANG Wen-jian2, 3*, LIU Xiang1, HE Liang4. Quantitative Analysis of Cotton/Polyester/Wool Blended Fiber Content by Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3565-3570. |
[8] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[9] |
SUN Cheng-yu1, JIAO Long1*, YAN Na-ying1, YAN Chun-hua1, QU Le2, ZHANG Sheng-rui3, MA Ling1. Identification of Salvia Miltiorrhiza From Different Origins by Laser
Induced Breakdown Spectroscopy Combined with Artificial Neural
Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3098-3104. |
[10] |
LIU Shu1, JIN Yue1, 2, SU Piao1, 2, MIN Hong1, AN Ya-rui2, WU Xiao-hong1*. Determination of Calcium, Magnesium, Aluminium and Silicon Content in Iron Ore Using Laser-Induced Breakdown Spectroscopy Assisted by Variable Importance-Back Propagation Artificial Neural Networks[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3132-3142. |
[11] |
CAI Jian-rong1, 2, HUANG Chu-jun1, MA Li-xin1, ZHAI Li-xiang1, GUO Zhi-ming1, 3*. Hand-Held Visible/Near Infrared Nondestructive Detection System for Soluble Solid Content in Mandarin by 1D-CNN Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2792-2798. |
[12] |
PU Shan-shan, ZHENG En-rang*, CHEN Bei. Research on A Classification Algorithm of Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2446-2451. |
[13] |
ZHU Yan-ping1, CUI Chuan-jin1*, CHENG Peng-fei1, 2, PAN Jin-yan1, SU Hao1, 2, ZHANG Yi1. Measurement of Oil Pollutants by Three-Dimensional Fluorescence
Spectroscopy Combined With BP Neural Network and SWATLD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2467-2475. |
[14] |
TANG Ting, PAN Xin*, LUO Xiao-ling, GAO Xiao-jing. Fusion of ConvLSTM and Multi-Attention Mechanism Network for
Hyperspectral Image Classification[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2608-2616. |
[15] |
LIU Zhao1, 2, LI Hua-peng1, CHEN Hui1, 2, ZHANG Shu-qing1*. Maize Yield Forecasting and Associated Optimum Lead Time Research Based on Temporal Remote Sensing Data and Different Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2627-2637. |
|
|
|
|