|
|
|
|
|
|
Near Infrared Spectroscopy Identification Method of Wood Surface Defects Based on SA-PBT-SVM |
YU Hui-ling1, MEN Hong-sheng2, LIANG Hao2, ZHANG Yi-zhuo2* |
1. Northeast Forestry University, Information and Computer Engineering College, Harbin 150040, China
2. Northeast Forestry University, College of Mechanical and Electrical Engineering, Harbin 150040, China |
|
|
Abstract In this paper, near infrared spectroscopy was applied to build an identification model to predict four types of defects on the surface of wood boards. A calibration set and a prediction set made of 50 and 30 samples were built randomly and respectively. In addition, a near infrared spectrometer, ranging from 900 to 1 700 nm was used to collect the spectra of the surface of the boards. The original spectra were pre-treated by SNV algorithm to eliminate the influence of solid particle size, surface scattering, and the change of optical path of diffused reflectance spectra. Afterwards, a training model was built by partial binary tree of support vector machine (PBT-SVM), and parameters were optimized by simulated annealing (SA) algorithm to find the optimal parameters and band characteristics. Then an identification model was built based on optimal parameters, band characteristics, and the identification of prediction set. The results showed that the performance of polynomial kernel function was obtained with the parameters setting as γ=28.63, coef=18.69, d=1 and, C=12.03. The recognition rate of crack and live knot was 100%, while the recognition rate of dead knot and wormhole was 93.33%. The mean accuracy of identification reached 96.65% with an average recognition time of 0.002 s. The approach was feasible to classify the four types of defects on the surface of solid wood effectively.
|
Received: 2017-01-31
Accepted: 2017-06-20
|
|
Corresponding Authors:
ZHANG Yi-zhuo
E-mail: nefuzyz@163.com
|
|
[1] Zhang Yizhuo, Xu Chao, Li Chao. Journal of Forestry Research, 2015, 26(3): 745.
[2] Zhang Yizhuo, Liu Sijia, Cao Jun. Wood Sci. Technol., 2016, 50(3): 297.
[3] Zhang Yizhuo, Liu Sijia, Tu Wenjun. Optical Engineering, 2015, 54(10): 103102(1).
[4] Sundaram J, Mani S, Kandala C V K. American Journal of Analytical Chemistry, 2015, 6(12): 923.
[5] Jones P D, Schimleck L R, Peter G F, et al. Wood Sci. Technol., 2006, 40(8): 709.
[6] YANG Zhong, CHEN Ling, FU Yue-jin(杨 忠, 陈 玲, 付跃进). Journal of Northeast Forestry University(东北林业大学学报), 2012, 40(8): 70.
[7] Miranda Angela,Lavrador Rui,Julio Filipal, et al. Behavior Research Methods, 2016, 48(4): 1667.
[8] Cogill S, Wang L. Bioinformatics, 2016, 32(23): 3611.
[9] Xu Yitian, Chen Mei, Li Guohui. International Journal of Systems Science, 2016, 47(15): 3637.
[10] Zhai Shijun, Pan Juan, Luo Hongwei, et al. Measurement, 2016, 80: 58. |
[1] |
WANG Xue-pei1, 2, ZHANG Lu-wei1, 2, BAI Xue-bing3, MO Xian-bin1, ZHANG Xiao-shuan1, 2*. Infrared Spectral Characterization of Ultraviolet Ozone Treatment on Substrate Surface for Flexible Electronics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1867-1873. |
[2] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[3] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[4] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[5] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[6] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[7] |
PENG Yan-fang1, WANG Jun1, WU Zhi-sheng2*, LIU Xiao-na3, QIAO Yan-jiang2*. NIR Band Assignment of Tanshinone ⅡA and Cryptotanshinone by
2D-COS Technology and Model Application Tanshinone Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1781-1785. |
[8] |
WANG Li-qi1, YAO Jing1, WANG Rui-ying1, CHEN Ying-shu1, LUO Shu-nian2, WANG Wei-ning2, ZHANG Yan-rong1*. Research on Detection of Soybean Meal Quality by NIR Based on
PLS-GRNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1433-1438. |
[9] |
FU Yan-hua1, LIU Jing2*, MAO Ya-chun2, CAO Wang2, HUANG Jia-qi2, ZHAO Zhan-guo3. Experimental Study on Quantitative Inversion Model of Heavy Metals in Soda Saline-Alkali Soil Based on RBF Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1595-1600. |
[10] |
LI Jia-yi1, YU Mei1, LI Mai-quan1, ZHENG Yu2*, LI Pao1, 3*. Nondestructive Identification of Different Chrysanthemum Varieties Based on Near-Infrared Spectroscopy and Pattern Recognition Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1129-1133. |
[11] |
CHEN Chu-han1, ZHONG Yang-sheng2, WANG Xian-yan3, ZHAO Yi-kun1, DAI Fen1*. Feature Selection Algorithm for Identification of Male and Female
Cocoons Based on SVM Bootstrapping Re-Weighted Sampling[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1173-1178. |
[12] |
LI Xue-ying1, 2, LI Zong-min3*, CHEN Guang-yuan4, QIU Hui-min2, HOU Guang-li2, FAN Ping-ping2*. Prediction of Tidal Flat Sediment Moisture Content Based on Wavelet Transform[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1156-1161. |
[13] |
ZHANG Xiao-hong1, JIANG Xue-song1*, SHEN Fei2*, JIANG Hong-zhe1, ZHOU Hong-ping1, HE Xue-ming2, JIANG Dian-cheng1, ZHANG Yi3. Design of Portable Flour Quality Safety Detector Based on Diffuse
Transmission Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1235-1242. |
[14] |
ZHENG Kai-yi1, ZHANG Wen1, DING Fu-yuan1, ZHOU Chen-guang1, SHI Ji-yong1, Yoshinori Marunaka2, ZOU Xiao-bo1*. Using Ensemble Refinement (ER) Method to OptimizeTransfer Set of Near-Infrared Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1323-1328. |
[15] |
CHENG Jie-hong1, CHEN Zheng-guang1, 2*, YI Shu-juan2. Wavelength Selection Algorithm Based on Minimum Correlation Coefficient for Multivariate Calibration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 719-725. |
|
|
|
|