|
|
|
|
|
|
Discrimination of Transgenic Maize Containing the Cry1Ab/Cry2Aj and G10evo Genes Using Near Infrared Spectroscopy (NIR) |
PENG Cheng1, FENG Xu-ping2*, HE Yong2, ZHANG Chu2, ZHAO Yi-ying2, XU Jun-feng1 |
1. State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences,Hangzhou 310021, China
2. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract Genetic engineering technique has made rapid strides in the past decades,however, the potential problems of this technique for environmental, ethical and religious impact are unknown. It is necessary to research on the detection of genetically modified organisms in agricultural crops and in products derived. In the present study, Near infrared spectroscopy (NIR) combined with chemometrics was successfully proposed to identify transgenic and non-transgenic maize. Transgenic maize single kernel and flour containing both cry1Ab/cry2Aj-G10evo protein and their parent, non-transgenic ones were measured in NIR diffuse reflectance mode with spectral range of 900~1 700 nm. Savitzky-Golay(SG)was used to preprocess the selection spectral region with absolute noises. Two classification methods, partial least square (PLS) and support vector machine (SVM): were used to build discrimination models based on the preprocessed full spectra and the dimension reduction information extracted by principal component analysis (PCA). Discriminant results of transgenic maize kernel based on SVM obtained a better performance by using the preprocessed full spectra compared to PLS model. The SVM achieved more than 90% calibration accuracy, while the PLS obtained just about 85% accuracy. By applying the PCA dimension reduction of the NIR reflectance in conjunction with the SVM model, the discrimination of transgenic from non-transgenic maize kernel was with accuracy up to 100% for both calibration set and validation set. The correct classification for transgenic and non-transgenic maize flour was 90.625% using SVM based on preprocessed full spectra, although degration of exogenous gene and protein existed during the milling. The results indicated that INR spectroscopy techniques and chemometrics methods could be feasible ways to differentiate transgenic maize and other transgenic food.
|
Received: 2016-08-02
Accepted: 2017-02-19
|
|
Corresponding Authors:
FENG Xu-ping
E-mail: pimmmx@163.com
|
|
[1] Domingo J L,Giné B J. Environment International, 2011, 37(4): 734.
[2] Hilbeck A, Binimelis R, Defarge N, et al. Environmental Sciences Europe, 2015, 27(1): 1.
[3] Alishahi A, Farahmand H, Prieto N, et al. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2010, 75(1): 1.
[4] WANG Hai-long, YANG Xiang-dong, ZHANG Chu, et al(王海龙,杨向东,张 初,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(6): 1843.
[5] Luna A S, Da S A, Pinho J S, et al. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2013,100(12): 115.
[6] Biradar K S, Nadaf H L, Kenganal M. Indian Journal of Plant Physiology, 2010,15(3):234.
[7] Wu H, Zhang Y, Zhu C, et al. International Journal of Molecular Sciences, 2012, 13(2): 1919.
[8] Ballari R V,Martin A. Food Chemistry, 2013, 141(3): 2130.
[9] Savitzky A,Golay M J E. Analytical Chemistry, 1964, 36(8): 1627.
[10] Jung Y M. Bulletin- Korean Chemical Society, 2003, 24(9): 1345.
[11] Geladi P,Kowalski B R. Analytica Chimica Acta, 1986, 185(86): 1.
[12] Cortes C,Vapnik V. Machine Learning, 1995, 20(3): 273.
[13] Hubert M,Rousseeuw P J. Technometrics, 2010, 47(1): 64.
[14] Workman J J. Applied Spectroscopy Reviews, 1996, 31(3): 251. |
[1] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[2] |
WANG Xue-pei1, 2, ZHANG Lu-wei1, 2, BAI Xue-bing3, MO Xian-bin1, ZHANG Xiao-shuan1, 2*. Infrared Spectral Characterization of Ultraviolet Ozone Treatment on Substrate Surface for Flexible Electronics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1867-1873. |
[3] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[4] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[5] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[6] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[7] |
PENG Yan-fang1, WANG Jun1, WU Zhi-sheng2*, LIU Xiao-na3, QIAO Yan-jiang2*. NIR Band Assignment of Tanshinone ⅡA and Cryptotanshinone by
2D-COS Technology and Model Application Tanshinone Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1781-1785. |
[8] |
WANG Li-qi1, YAO Jing1, WANG Rui-ying1, CHEN Ying-shu1, LUO Shu-nian2, WANG Wei-ning2, ZHANG Yan-rong1*. Research on Detection of Soybean Meal Quality by NIR Based on
PLS-GRNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1433-1438. |
[9] |
FU Yan-hua1, LIU Jing2*, MAO Ya-chun2, CAO Wang2, HUANG Jia-qi2, ZHAO Zhan-guo3. Experimental Study on Quantitative Inversion Model of Heavy Metals in Soda Saline-Alkali Soil Based on RBF Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1595-1600. |
[10] |
LI Jia-yi1, YU Mei1, LI Mai-quan1, ZHENG Yu2*, LI Pao1, 3*. Nondestructive Identification of Different Chrysanthemum Varieties Based on Near-Infrared Spectroscopy and Pattern Recognition Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1129-1133. |
[11] |
CHEN Chu-han1, ZHONG Yang-sheng2, WANG Xian-yan3, ZHAO Yi-kun1, DAI Fen1*. Feature Selection Algorithm for Identification of Male and Female
Cocoons Based on SVM Bootstrapping Re-Weighted Sampling[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1173-1178. |
[12] |
LI Xue-ying1, 2, LI Zong-min3*, CHEN Guang-yuan4, QIU Hui-min2, HOU Guang-li2, FAN Ping-ping2*. Prediction of Tidal Flat Sediment Moisture Content Based on Wavelet Transform[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1156-1161. |
[13] |
ZHANG Xiao-hong1, JIANG Xue-song1*, SHEN Fei2*, JIANG Hong-zhe1, ZHOU Hong-ping1, HE Xue-ming2, JIANG Dian-cheng1, ZHANG Yi3. Design of Portable Flour Quality Safety Detector Based on Diffuse
Transmission Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1235-1242. |
[14] |
ZHENG Kai-yi1, ZHANG Wen1, DING Fu-yuan1, ZHOU Chen-guang1, SHI Ji-yong1, Yoshinori Marunaka2, ZOU Xiao-bo1*. Using Ensemble Refinement (ER) Method to OptimizeTransfer Set of Near-Infrared Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1323-1328. |
[15] |
CHENG Jie-hong1, CHEN Zheng-guang1, 2*, YI Shu-juan2. Wavelength Selection Algorithm Based on Minimum Correlation Coefficient for Multivariate Calibration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 719-725. |
|
|
|
|