|
|
|
|
|
|
Synthesis of a Novel Fluorescent Probe and Its Application for Selectively Identifing Cu2+ |
ZHOU Gao2, FENG Feng1, 2*, CHEN Ze-zhong1, BAI Yun-feng1, CAI Hu2, GUO Fang-fang1, LI Rong2, HAN Wen-qiang2 |
1. Institute of Organic Chemistry, Datong University, Datong 037009, China
2. College of Chemistry, Nanchang University, Nanchang 330047, China |
|
|
Abstract A novel coumarin-based fluorescent probe 7-Diethylamino-2-oxo-2H- chromene-3-carboxylic acid quinolin-2-ylmethylene-hydrazide (FKBA) was designed and synthesized to identify Cu2+. FKBA was confirmed by means of IR, EA, MS, 1H NMR, and 13C NMR. The interaction between FKBA and metal ions was investigated via fluorescence spectrophotometry and UV absorption spectrophotometry. The results indicated that FKBA showed excellent selectivity and high sensitivity for Cu2+. Its UV absorption peak was redshift and the maximum UV absorption peaks was also changed when Cu2+ was added. However, under same conditions, it was only a slight change of UV absorption peak after the other metal ions, such as Ag+, Al3+, Ba2+, Ca2+, Cd2+, Co3+, Cr3+, Fe3+, Hg2+, K+, Mn2+, Mg2+, Ni2+, Na+ , Zn2+ and Pb2+were added. The selectivity of FKBA as a chemosensor for Cu2+ was tested by incubating FKBA with a range of environmentally and biologically important metal ions. Fluorescence spectra were notable quenching when Cu2+ was added, with only little interference by other metal ions. Fluorescence spectra of FKBA in the presence of each of different metal ions upon the addition of Cu2+ had the same quenching. Thus, it was notable that FKBA showed good capability of resisting disturbance. The color of FKBA turned from blue to brown upon the addition of Cu2+. The brown of complex restored to the original blue upon the addition of EDTA. The fluorescence intensity regained when EDTA was added, suggesting that fading fluorescence intensity changed due to the formation of KFBA-Cu2+ complex but not any catalytic action of Cu2+. FKBA was not stable and easily hydrolyzed in acidic environment due to their schiff-based structure and part of the FKBA hydrolyzed into other fluorescent substance. Furthermore, the detection limit was 0.13 μmol·L-1 according to the definition by IUPAC (cDL=3Sb/m). FKBA can be used as a fluorescent probe to detect Cu2+ in actual samples.
|
Received: 2015-05-16
Accepted: 2015-10-08
|
|
Corresponding Authors:
FENG Feng
E-mail: feng-feng64@263.net
|
|
[1] Upendra N K, Sreedhar B, Vijaya L B J, et al. J. Frontiers in Life Science, 2013, 7: 210.
[2] Evgeny O, Konstantin P, Roman K, et al. J. Acta Crystallographica Section D, 2014, 70: 2913.
[3] John H, Selkoe D J. J. Science, 2002, 297: 353.
[4] Leroy E, Boyer R, Auburger G, et al. J. Nature, 1998, 39: 451.
[5] Cheng P F, Xu K X, Yao W Y, et al. J. Chem. Res. Chinese Universities, 2013, 29: 462.
[6] HAO Zhi-hong, YAO Jian-zhen, TANG Rui-ling, et al(郝志红, 姚建贞, 唐瑞玲,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2015, 35(2): 527.
[7] Xiao Y, Liu S, Huang H M, et al. J. Chem. Res. Chinese Universities, 2013, 29: 845.
[8] Royzen M, Dai Z, Canary J W. J. Am. Chem. Soc., 2005, 127: 1612.
[9] Feng F, Liao X, Chen Z, et al. J. Anal. Chim. Acta, 2006, 575: 68.
[10] Liu W Y, Li H Y, Zhao B X, et al. J. Org. & Bio. Chem., 2011, 13: 4802.
[11] Zhou Y, Yao W Y, Yao C, et al. Sens. Actuators B, 2012, 174: 414.
[12] García-Beltrán O, Mena N, Friedrich L C, et al. J. Tetrahedaron Lett., 2012, 53: 5208.
[13] Jiang R S, Feng F, You Q, et al. J. Anal. Lett., 2008, 41: 2203.
[14] Martínez R, Espinosa A, Tárraga A, et al. J. Tetrahedron, 2010, 66: 3662.
[15] Yu C W, Wang T, Xu K, et al. J. Dyes and Pigments, 2013, 96: 38.
[16] Ge F, Ye H, Luo J Z, et al. J. Sens. Actuators, B, 2013, 181: 215.
[17] Wu J S, Liu W M, Zhuang X Q, et al. J. Org. Lett., 2007, 1: 33. |
[1] |
TANG Qing1, ZHANG Jing2, SONG Gui-xian2, XI Yun-yun2, HUANG Ying2*, TAO Zhu2, ZHOU Qing-di3, WEI Gang4*. A Fluorescent Probe Based Host-Guest Complexation Between Cucurbit[7]uril and Neutral Red for the Detection of Paraquat Herbicide in Water Sample[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1160-1164. |
[2] |
WANG Huan, GOU Xing-xing, PU Xiao-hua*, WANG Jiao, HU Xiao-bing, LI Zong-xiao. Exploration of the Interaction Mechanism between Doxorubicin Hydrochloride and DNA by Spectroscopic Techniques and Isothermal Titration Calorimetry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 540-545. |
[3] |
GUO Hui1,2, YANG Ke-ming1*, ZHANG Wen-wen1, LIU Cong1, XIA Tian1. Spectra Recognition of Corn Pollution Degree under Copper and Lead Ion Stress[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 212-217. |
[4] |
QIU Xin1, LI Xin-xia2, Arkin IBURAIM2, Gulina KUERBAN3, ZHANG Li-hua1, LI Yan1*. Determination of Cephradine Capsules Content Based on Fluorescence Quenching Method of FOS-μSIA-LOV[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3475-3478. |
[5] |
ZHAO Shan1,2,3, YIN Gao-fang1,3, ZHAO Nan-jing1,3*, YANG Rui-fang1,3, XIAO Xue1,3, LIU Jian-guo1,3, LIU Wen-qing1,3. Metal Ions Fluorescence Quenching and Correcting on Dissolved Organic Matter in Drinking Water Using Fluorescence Excitation-Emission Matrix and Parallel Factor Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(07): 2317-2324. |
[6] |
YUAN Jian-ying1, WU Yu-tian1, MU Lan1, ZENG Xi1*, WEI Gang2*. A Dual-Function Quinaldine Derivate Fluorescent Probe for Fe3+/F-[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(05): 1424-1430. |
[7] |
YANG Cheng-hu1, LIU Yang-zhi1, ZHU Ya-xian2, ZHANG Yong1,3*. In Situ Investigation of the Interactions of Pyrene and Phenanthrene with Humic Acid Using Laser Induced Nanoseconds Time Resolved Fluorescence Quenching Method Combined with PARAFAC Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(05): 1519-1524. |
[8] |
JIANG Tao, ZHANG Jing, ZHAO Wen-yan*, ZHANG Chun-ling, JIA Rui-mei. Spectral Study on the Interaction between Ionic Liquid and Fleroxacin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1211-1214. |
[9] |
LI Wei-hua1, 2, WU Gun1, 2, YAO Liang1, 2, HUANG Xian-huai2, WANG Jia-qin1, 2, SHEN Hui-yan1, 2, XUE Tong-zhan1, 2 . Characterizing the Existence of Fluorescence Quenching Agents Using EEM Fluorescence and UV Spectra: Taking the Interaction of Humic Acid and Fe(Ⅲ) as an Example [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(03): 783-787. |
[10] |
ZUO Hang1,3, CHEN Yi-zhen1, CHEN Jian-hua1, GUO Yang1, WANG Ru-ming1, FANG Fang1, ZHAO Jia-ying1, LIU Ying1,2*. Study on Adsorption and Desorption Characteristics of Cd2+ and Cu2+ on the Surface Sediments of Sanhuhekou of Yellow River by Using ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(03): 902-909. |
[11] |
LI Jing-hong1, 2, BIAN Lin2, TIAN Su-yan2, KONG Jin-ming3, LI Lian-zhi2* . Spectroscopic Study on the Interaction of Human Cytoglobin with Copper(Ⅱ) Ion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(01): 321-326. |
[12] |
HUANG Ke-han, QIN Cui-fang, CAO Xiao-dan, YANG Tai-qun, CHEN Yu-ting, ZHANG San-jun, PAN Hai-feng*, XU Jian-hua. Precise and Rapid Detection of Glutathione by Using Novel Fluorescent Ag Nanoclusters [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(12): 3973-3977. |
[13] |
YANG Shi-long1, 2, JIANG Wei-na1, 2, YIN Bin3, XU Li2, 3, 4*, ZHAO Feng-yi2, 5, GAO Bu-hong4, SUN Hai-jun4, DU Li-ting4, TANG Ying4, 5, CAO Fu-liang2, 5. A Quercetin-Based Fluorescent Probe for the Recognition of Fluorid Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3582-3587. |
[14] |
LIU Yang-zhi1, YANG Cheng-hu1, ZHU Ya-xian2, ZHANG Yong1,3* . In Situ Investigating of the Interaction of Phenanthrene and Alkyl Phenanthrene with Humic Acid with Laser Induced Nanoseconds Time Resolved Fluorescence Quenching Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(10): 3332-3336. |
[15] |
LI Ling-ling, NI Gang*, WANG Jia-nan, LI Jing, LI Wei . Synthesis of Nitrogen-Doped Carbon Quantum Dots and Its Application as Fluorescent Sensor for Hg2+ [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(09): 2846-2851. |
|
|
|
|