光谱学与光谱分析 |
|
|
|
|
|
Determination of Trace Elements in the Melon of Indo-Pacific Humpback Dolphins (Sousa chinensis) with ICP-MS |
ZHANG Ling-li1, 2, DING Yu-long1, 3, ZHANG Mei1, 3, GUI Duan1, 3, NING Xi2, 3, LI Jun1, 3, WU Yu-ping1, 3* |
1. South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510275, China2. School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China3. School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China |
|
|
Abstract The Indo-Pacific humpback dolphins (Sousa chinensis) with long life-span are top predators in marine ecosystem -and they could accumulate heavy metals and persistent organic pollutants in their tissues, while the melon is a unique lipid-rich structure within the cetacean forehead that functions in the transmission of echolocation signals. To explore the baseline levels and the main characteristics of the components, the concentrations of vanadium (V), nickel (Ni), chromium (Cr), manganese (Mn), copper (Cu), arsenic (As), zinc (Zn), mercury (Hg), selenium (Se), cadmium (Cd) and lead (Pb) were determined in the melon of the Indo-Pacific humpback dolphins with inductively coupled plasma mass spectrometry (ICP-MS). The results showed that this method was quite suitable for the determination of trace elements in the melon of Indo-Pacific humpback dolphins with highly accuracy and precision, and the trace elements in melon existed individual differences. The average contents were in the order of Zn>As>Cu>Mn>Se>Hg>Cr>Ni>V>Pb>Cd. It is worth noting that the within (1.158 μg·g-1 ww), non-essential toxic trace element may cause toxic effect on the dolphins. Spearman correlation analysis showed positively significant correlations between As, Cd, Hg and body length, indicating that the concentrations of As, Cd, Hg may increase with age. Moreover, Cr and Ni were positively correlated (p<0.05), a significant negative correlation was observed between Mn and As (p<0.01), indicating that there are certain correlation among elements. In addition, the principal component analysis results showed that V, Mn, Ni, Se, Cu, Hg are the main characteristics of trace elements for melon. This study presents a reliable method for determination of the trace element analysis in cetacean melon, and this is the first study that reports the trance elements in the melon of the Indo-Pacific humpback dolphins in PRE that could provide reasonable and effective information for its conservation work.
|
Received: 2015-06-27
Accepted: 2015-10-20
|
|
Corresponding Authors:
WU Yu-ping
E-mail: exwyp@163.com
|
|
[1] Ye F, Huang X, Zhang D, et al. Journal of Environmental Sciences, 2012, 24(4): 579. [2] Tanabe S, Iwata H, Tatsukawa R. Science of the Total Environment, 1994, 154(2): 163. [3] Aubail A, Méndez-Fernandez P, Bustamante P, et al. Marine Pollution Bulletin, 2013, 76(1): 158. [4] ZOU Yu-zhen, CAI Wan-ping, GU Sheng-ming(邹玉珍, 蔡琬平, 顾生明). Acta Theriologica Sinica(兽类学报), 1982,(1): 19. [5] FU Liang, TANG You-gen, XIE Hua-lin(符 靓, 唐有根, 谢华林). Food Science and Technology(食品科技), 2012,(4): 291. [6] Borrell A, Clusa M, Aguilar A, et al. Chemosphere, 2015, 122: 288. [7] Borrell A, Aguilar A, Tornero V, et al. Chemosphere, 2014, 107: 319. [8] Stavros H-C W, Stolen M, Durden W N, et al. Chemosphere, 2011, 82(11): 1649. [9] Bryan G. Marine Ecology, 1984, 5(3): 1289. [10] Méndez-Fernandez P, Webster L, Chouvelon T, et al. Science of the Total Environment, 2014, 484: 206. [11] Yang J, Kunito T, Tanabe S, et al. Environ Pollut, 2007, 148(2): 669. |
[1] |
CAI Shi-shi1,ZHANG En1, 2*. Trace Elements and U-Pb Ages of Zircons from Myanmar Jadeite-Jade by LA-ICP-MS: Constraints for Its Genesis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1896-1903. |
[2] |
LI Xiao-xiao1, YANG Zhi-jun1, 2*, HUANG Shan-shan1, CHEN Yao-ming1, ZENG Xuan1, ZHOU Wen-xiu1. FTIR Spectra and LA-ICP-MS Research of Growth Zones in Sapphire Bands from Changle, Shandong Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 407-412. |
[3] |
JIANG Bo1, 3, HUANG Jian-hua2*, LIU Wei2. Multi-Element Analysis of Wild Chinese Honeylocust Fruit by Inductively Coupled Plasma Tandem Mass Spectrometry (ICP-MS/MS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3859-3864. |
[4] |
PENG Chuan-yi, ZHU Xiao-hui, XI Jun-jun, HOU Ru-yan, CAI Hui-mei*. Macro- and Micro-Elements in Tea (Camellia sinensis) Leaves from Anhui Province in China with ICP-MS Technique: Levels and Bioconcentration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1980-1986. |
[5] |
LUO Li-qiang, SHEN Ya-ting, MA Yan-hong, XU Tao, CHU Bin-bin, ZENG Yuan, LIU Jian. Development of Laboratory Microscopic X-Ray Fluorescence Spectrometer and the Study on Spatial Distribution of Elements in Biofilms and Maize Seeds[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1003-1008. |
[6] |
MI Hai-peng1, ZHU Hong-ming1, LI Gen-rong1, YU Xiang1, MA Bing-bing2, ZHOU Xi-lin2, WANG Ya-sen2, SU Zhong-hua2, DENG Xiong2. Determination of Pb, Cr, Cd, and As in Aluminum-Plastic Packaging Materials via Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(02): 646-650. |
[7] |
XIONG Chan1, 5, JIANG Xue-hui1, TIAN Ya-ping2, MA Qing-wei3, LIU Li-peng4, GUO Guang-hong2* . Determination of 20 Trace Elements in the Blood Collection Tubes with ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3676-3682. |
[8] |
DONG Jun-qing1, WANG Yong-ya1, GAN Fu-xi1, 2, LI Qing-hui1* . Trace Element Analysis by PIYE and ICP-AES of Raw Material and Ancient Serpentine Artifacts from China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3780-3788. |
[9] |
ZHAO Liang-cheng1, JIANG Yun-jun1, GUO Xiu-ping1, LI Xing1, WANG Yi-dan3, GUO Xiao-biao1, LU Feng1, LIU Hua-jie2*. Optimization of ICP-AES and ICP-MS Techniques for the Determination of Major, Minor and Micro Elements in Lichens [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(10): 3320-3325. |
[10] |
ZHOU Shan-shan1,2, LIU Ying1,2* . The Levels of 21 Elements and Inter-element Interactions in Scalp Hair of Women at Childbearing Age in A Rural Area, Inner Mongolia[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(09): 3068-3074. |
[11] |
CHEN Lin-wei, CAI Hao*, WANG Qin, QIAO Feng-xian, QIN Kun-ming, CAI Bao-chang . Elemental Analysis of Nine Herbal Drugs for Nourishing Blood by Inductively Coupled Plasma Atomic Emission Spectroscopy with Microwave Digestion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(07): 2358-2362. |
[12] |
WANG Ping1, LI Dui-yuan2 . Quantitative Analysis of Mn in Soil Based on LIBS with Multivariate Nonlinear Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(04): 1197-1201. |
[13] |
WANG Xiao-wei1, LIU Jing-fu2, GUAN Hong3, WANG Xiao-yan1, SHAO Bing1*, ZHANG Jing1, LIU Li-ping1, ZHANG Ni-na1. Determination of Total Sulfur Dioxide in Chinese Herbal Medicines via Triple Quadrupole Inductively Coupled Plasma Mass Spectrometry [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(02): 527-531. |
[14] |
ZOU Feng, GUO Su-juan*, WANG Jing, PENG Jing-jing, ZHANG Xiao-na, PENG Ya-qin . Determination the Change of Main Trace Elements in the Ovary with Self- and Cross-Pollination of Chinese Chestnut by ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(10): 2867-2871. |
[15] |
CHEN Qian1, WU Xi2, HOU Xian-deng2, XU Kai-lai1* . Simultaneous Determination of Sn and S in Methyltin Mercaptide by Microwave-Assisted Acid Digestion and ICP-OES[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(09): 2393-2396. |
|
|
|
|