|
|
|
|
|
|
Progress in the Analysis of Elements in PM2.5 by ICP-MS |
YUAN Xiao-xue, ZHOU Ding-you, LI Jie*, XU Xian-shun, YONG Li, HU Bin, LIU Tao* |
Institute of Physicochemical Detection, Sichuan Center for Disease Control and Prevention, Key Laboratory of Physicochemical Detection for Poisoning of Sichuan Province, Chengdu 610041, China |
|
|
Abstract Atmospheric fine particles (PM2.5), with small particle size and large specific surface area, are easy to adsorb pollutants such as metals, organic compounds, viruses, bacteria etc., and become carriers and reactants of toxic and harmful substances, which seriously affect air quality and have become the primary pollutants in the atmospheric environment. Metal and metalloid elements in PM2.5 seriously pollute the natural environment because of their non-degradability and hysteresis. When PM2.5 is inhaled into the human body, toxic and harmful metal and metalloid elements are deposited in the alveoli from the respiratory tract and then transferred to the blood and other organs. They can affect the normal physiological functions of the human body, resulting in a slow development of the body length, and even lead to cancer and other diseases, which seriously threaten human health. In recent years, many cities in China have also carried out corresponding studies on the pollution characteristics, distribution level and source analysis of metal elements in PM2.5. For these reasons, the method of effectively collecting metal and metalloid elements in PM2.5, the pretreatment method with high digestion efficiency and the detection method with simple, rapid, accurate, sensitive and strong anti-interference ability have become the research focus and hotspots in elemental analysis of PM2.5. The analytical method based on inductively coupled plasma mass spectrometry (ICP-MS) can not only satisfy the simultaneous determination of multiple elements in PM2.5 but also has a wide dynamic linear range, low detection limit and high sensitivity. Scholars have carried out a lot of studies and formed a relatively complete research system. This method can provide theoretical data support for the composition, origin, temporal and spatial distribution, morphological and corresponding isotopic analysis, physiological toxicity and transformation mechanism of metals and metalloids in PM2.5. Therefore, the analytical methods for the determination of metal and metalloid elements in PM2.5 by ICP-MS are reviewed in this paper. The selection of the sampling filter, the pretreatment method and the selection of the digestion solution are described in detail. The applications of several ICP-MS combined techniques in the speciation and isotope analysis of metal and metalloid elements in PM2.5 are emphasized. The advantages and disadvantages of various sampling filters, pretreatment methods, digestion solutions and detection techniques are summarized, and the future challenges and research directions in this field are also proposed. This paper can provide theoretical reference for the further development of simple, rapid, sensitive and selective detection of metal and metalloid elements in PM2.5 by ICP-MS.
|
Received: 2019-07-11
Accepted: 2019-12-02
|
|
Corresponding Authors:
LI Jie, LIU Tao
E-mail: lijie2314@163.com; liutaoschx@126.com
|
|
[1] Ma Q X, Wu Y F, Zhang D Z, et al. Science of Total Environment, 2017, 599(11): 246.
[2] YUAN Xiao-xue, JIANG Yang, YANG Chang-xiao, et al(袁小雪,江 阳,杨长晓,等). Chinese Journal of Analytical Chemistry(分析化学), 2017, 45(11): 1641.
[3] Yuan X X, You F, Yong L, et al. Microchemical Journal, 2019, 144: 391.
[4] Akimoto H. Science, 2003, 302(5651): 1716.
[5] Kulkarni P, Chellam S, Flanagan J B, et al. Analytica Chimica Acta, 2007, 599: 170.
[6] Das R, Kheari B, Srivastava B, et al. Atmospheric Pollution Research, 2015, 6: 742.
[7] Jin Q, Gong L K, Liu S Y, et al. International Journal of Environmental Analytical Chemistry, 2017, 97(10): 983.
[8] Mittleman M A. The New England Journal of Medicine, 2007, 357(11): 1147.
[9] Zhang F Y, Li L P, Thomas K, et al. International Journal of Environmental Research and Public Health, 2011, 6(8): 2109.
[10] Chen H, Burnett R T, Kwong J C, et al. Circulation, 2014, 129(5): 562.
[11] Susanna E, RossanaT, Mara L, et al. BMC Pulmonary Medicine, 2014, 14: 31.
[12] Konstantina D, Evangelia S, Rob B, et al. American Journal of Research and Critical Care Medicine, 2014, 189(6): 684.
[13] Liu M M, Wang D, Zhao Y, et al. Journal of Epldemeology, 2013, 23(4): 280.
[14] EPA 40 CFR Part 50. National Ambient Air Quality Standards for Particulate Matter: Proposed Appendix Rule. Washington D. C. US Environmental Protection Agency, 1997.
[15] Komarnicki G J K. Environmental Pollution, 2005, 136(1): 47.
[16] Qie G H, Wang Y, Wu C, et al. Journal of Environmental Management, 2018, 215: 195.
[17] Jozef S P, Wioletta R K, Elwira Z Z. Environmental Monitoring Assessment, 2010, 168(1-4): 613.
[18] Demet C D. Journal of Envirmental Biology, 2011, 32(6): 839.
[19] Pasias I N, Thomaidis N S, Bakeas E B, et al. Environmental Monitoring and Assessment, 2013, 185(8): 6867.
[20] Okuda T, Fujimori E, Hatoya K, et al. Aerosol and Quality Research, 2013, 13(6): 1864.
[21] Godelitsas A, Nastos P, Mertzimekis T J, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011, 269(24): 3077.
[22] Tirez K, Vanhoof C, Peters J, et al. Journal of Analytical Atomic Spectrometry, 2015, 30(10): 2074.
[23] Biegalski S R, Villareal T A. Journal of Radioanalytical and Nuclear Chemistry, 2005, 263(3): 767.
[24] Avino P, Capannesi G, Rosada A. Microchemical Journal, 2008, 88(2): 97.
[25] Prasoon D, Pramod K, Birch M E. Aerosol Science and Technology, 2012, 46(3): 316.
[26] Duan Y X, Su Y X, Jin Z, et al. Analytical Chemistry, 2000, 72(7): 1672.
[27] Li Z Y, Ji Y Q, Ma H Q, et al. Aerosol and Quality Research, 2017, 17(4): 1105.
[28] Tositti L, Brattich E, Masiol M,et al. Environmeal Science and Pollution Research, 2014, 21(2): 872.
[29] Gemeiner H, Dourado T A, Sulato E T, et al. Environmental Science and Pollution Research, 2017, 24(25): 20616.
[30] Du L, Turner J. Science of the Total Environment, 2015, 529: 65.
[31] Diong H T, Das R, Khezri B, et al. SpringerPlus, 2015, 5: 1242.
[32] Zhao Y, Yu R L, Hu G R, et al. Journal of Rare Earths, 2017, 35(1): 98.
[33] Hwang S L, Chi M C, Guo S E, et al. Environmental Scicence and Pollution Research, 2018, 25(9): 9101.
[34] Drago G, Perrino C, Canepari S, et al. Environmental Research, 2018, 165: 71.
[35] Zhang L, Wang Y F, Liu Y Y, et al. Atmospheric Environment, 2019, 198: 70.
[36] Manousakas M, Papaefthymiou H, Eleftheriadis K, et al. Science of the Total Environment, 2014, 493: 694.
[37] He M, Huang L J, Zhao B S, et al. Analytica Chimica Acta, 2017, 973: 1.
[38] SUN Qi-xuan, WEI Xing, LIU Xun, et al(孙绮旋, 魏 星, 刘 珣, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(5): 1340.
[39] Liu R, Zhang S X, Wei C, et al. Accounts of Chemical Research, 2016, 49(5): 775.
[40] Upadhyay N, Majestic B J, Prapaipong P, et al. Analytical and Bioanalytical Chemistry, 2009, 394(1): 255.
[41] HE Ying, CHEN Fa-rong, ZHUANG Zhi-xia, et al(何 鹰,陈发荣,庄峙厦,等). Environmental Chemistry(环境化学), 2003, 22(3): 294.
[42] TIAN Pei-yao, ZHAO Zhu, TAO Jing, et al(田佩瑶, 赵 竹, 陶 晶, 等). Chinese Journal of Public Health(中国公共卫生), 2016, 32(11): 1580.
[43] HUANG Jing, WANG Chen-xi, YAO Jia(黄 晶,王晨希,姚 佳). Environmental Science and Mangement(环境科学与管理), 2015, 40(8): 140.
[44] DU Qing, ZHANG Yu-yan(杜 青,张予燕). The Administration and Technique of Environmental Monitoring(环境监测管理与技术), 2017, 29(2): 45.
[45] ZHANG Xiao-yun, QIN Hong-bing, XU Heng-sheng(张晓赟, 秦宏兵, 徐恒省). Pollution Control Technology(污染防治技术), 2018, 31(6): 81.
[46] XU Jing, LI Xing-ru, ZHANG Lan, et al(徐 静, 李杏茹, 张 兰, 等). Environmental Science(环境科学), 2019, 40(6): 2501.
[47] YAN Guang-xuan, LEI Hao-jie, ZHANG Jing-wen, et al(闫广轩, 雷豪杰, 张静雯, 等). Environmental Science(环境科学), 2019, 40(3): 1071.
[48] Tuku F, Tatsuya K, Masahiro S, et al. Analytical Sciences, 2007, 23(2): 207.
[49] GUO Xiao-wu(郭孝武). Ultrasonic Extraction Separation(超声提取分离). Beijing: Chemical Industry Press(北京: 化学工业出版社), 2008.
[50] Niu J J, Rasmussen P E, Wheeler A, et al. Atmospheric Environment, 2010, 44(2): 235.
[51] ZHU Zhao-di, WU Hui-zhong, TANG Xu-gang, et al(朱照地, 吴惠忠, 汤旭钢, 等). Modern Preventive Medicine(现代预防医学), 2019, 46(3): 423.
[52] SONG Yin-sheng, PAN Chun-yan, LIU Jin, et al(宋寅生, 潘春燕, 刘 金, 等). Journal of Environment and Health(环境与健康杂志), 2016, 33(12): 1108.
[53] HUANG Jing(黄 晶). Chemical Analysis and Meterage(化学分析计量), 2016, 25(1): 41.
[54] HE Jia-hui(何嘉慧). Chmical Enterprise Management(化工管理), 2016, 3: 70.
[55] DONG Xian, ZOU Hai-feng, LIANG Long-chao, et al(董 娴, 邹海凤, 梁隆超, 等). The Administration and Technique of Environmental Monitoring(环境监测管理与技术), 2019, 31(1): 14.
[56] JIA Yue-qing, YIN Hui-min, ZHOU Rui, et al(贾岳清, 殷惠民, 周 瑞, 等). Environmental Chemistry(环境化学), 2018, 37(12): 2767.
[57] Tirez K, Vanhoof C, Peters J, et al. Journal of Analytical Atomic Spectrometry, 2015, 30(10): 2074.
[58] Leal Granadillo I A, Alonso J I G, Sanz-Medel A. Analytical Chimica Acta, 2000, 423(1): 21.
[59] Fang L Y, Zhang Y M, Lu B B, et al. Microchemical Journal, 2019, 146: 1269.
[60] DAO Xu, LÜ Yi-bing, TENG En-jiang, et al(刀 谞, 吕怡兵, 滕恩江, 等). Chinese Journal of Chromatography(色谱), 2014, 32(9): 936.
[61] Picoloto R S, Cruz S M, Mello P A, et al. Microchemical Journal, 2014, 116: 225.
[62] Meng Q Y, Fan Z H, Buckley B, et al. Atmospheric Environment, 2011, 45: 2021.
[63] Filik H, Avan A A. Food Chemistry, 2019, 292: 151.
[64] Mamatha P, Venkateswarlu G, Thangavel S, et al. Atomic Spectroscopy, 2019, 40(1): 31.
[65] Chajduk E, Polkowska-Motrenko H. Food Chemistry, 2019, 292: 129.
[66] Zhu Y B, Kashiwagi K, Sakaguchi M, et al. Journal of Nuclear Science and Technology, 2006, 43(4): 474.
[67] Nishiguchi K, Utani K, Fujimori E. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1125.
[68] Clough R, Lohan M C, Ussher S J, et al. Talanta, 2019, 199: 425.
[69] Yang S W, Zhang D Y, Cheng H Y, et al. Analytica Chimica Acta, 2019, 1074: 54.
[70] Klencsar B, Li S W, Balcaen L, et al. TrAC Trends in Analytical Chemistry, 2018, 104: 118.
[71] Chajduk E, Polkowska-Motrenko H. Food Chmistry, 2019, 292: 129.
[72] Zheng J, Ohata M, Furuta N. Analyst, 2000, 125: 1025.
[73] Ronit J, Anja R, Karsten H, et al. Journal of Environmental Monitoring, 2010, 12(2): 409.
[74] Tziaras T, Pergantis S A, Stephanou E G, et al. Environmental Science & Technology, 2015, 49(19): 11640.
[75] Terahde P, Pantsar-Kallio M, Mann-Inen P K G. Journal of Chromatography A, 1996, 750(1-2): 83.
[76] Inoue Y, Kawabata K, Takahashi H. Journal of Chromatography A, 1994, 706(1-2): 127.
[77] Inoue Y, Sakai T, Kumagai H. Journal of Chromatography A, 1994, 675(1-2): 149.
[78] Pantsar-Kallio M, Mann-Inen P K G. Analytica Chimica Acta, 1996, 318(3): 335.
[79] Jackson B P, Miller W P. Environmental Science & Technology, 1999, 33(2): 270.
[80] Freije Carrelo L, Garcia Bellido J, Calderon Celis F, et al. Analytical Chemistry, 2019, 91(11): 7019.
[81] Pietila H, Peramaki P, Piispanen J, et al. Microchemical Journal, 2014, 112: 113.
[82] Cruz Alonso M, Fernandez B, Navarro A, et al. Talanta, 2019, 197:413.
[83] WANG Wei, LI Zhi-ming, XU Jiang, et al(汪 伟, 李志明, 徐 江, 等). Chinese Journal of Analytical Chemistry(分析化学), 2016, 44(7): 1053.
[84] Arakawa A, Jakubowski N, Fiemig S, et al. Analytical and Bioanalytical Chemistry, 2019, 411(16): 3497.
[85] Wang C F, Tu F H, Jeng S L, et al. Journal of Radioanalytical and Nuclear Chemistry, 1999, 242(1): 97.
[86] Noble S R, Horstwood M S A, Davy P, et al. Journal of Environmental Monitoring, 2008, 10(7): 830.
[87] Petit J C J, Jong J, Chou L, et al. Geostandards and Geoanalytical Research, 2008, 32(2): 149.
[88] Brown R J C, Jarvis K E, Disch B A, et al. Accreditation and Quality Assurance, 2010, 15(9): 493.
[89] Brown R J C, Jarvis K E, Disch B A, et al. Journal of Environmental Monitoring, 2009, 11(11): 2022.
[90] Brown R J C, Jarvis K E, Disch B A, et al. International Journal of Environmental Analytical Chemistry, 2013, 93(3): 335.
[91] Nischkauer W, Izmer A, Neouze M A, et al. Applied Spectroscopy, 2017, 71(7): 1613. |
[1] |
GUO Xiao-hua1, ZHAO Peng1, WU Ya-qing1, TANG Xue-ping3, GENG Di2*, WENG Lian-jin2*. Application of XRF and ICP-MS in Elements Content Determinations of Tieguanyin of Anxi and Hua’an County, Fujian Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3124-3129. |
[2] |
CHENG Can1, HEI Da-qian2*, JIA Wen-bao1, SHAN Qing1, LING Yong-sheng1, ZHAO Dong1. Study on Metallic Samples Determination Based on Prompt Gamma
Neutron Activation Analysis Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1928-1933. |
[3] |
LI Xue-ping1, 2, 3, ZENG Qiang1, 2, 3*. Development and Progress of Spectral Analysis in Coal Structure Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 350-357. |
[4] |
MENG Ru2,4, DU Jin-hua1,2*, LIU Yun-hua1,2, LUO Lin-tao1,3, HE Ke1,2, LIU Min-wu1,2, LIU Bo1,3. Exploration of Digestion Method for Determination of Heavy Metal Elements in Soil by ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2122-2128. |
[5] |
LIU Juan1, LIU Yu-zhu2, CHU Chen-xi3, BU Ling-bing1*, ZHANG Yang4. In Situ Online Detection of Lignite and Soot by Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 954-960. |
[6] |
TONG Li-hong1, ZHU Ling2, ZHAO Nan3, LÜ Yi-zhong1*, LIU Xia-yan1, JIANG Shan1, LI Ying-xin1. Spectroscopic Characteristics of Soil Humus Components Under Different Proportions of Organic and Inorganic Fertilizers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 523-528. |
[7] |
LIU Wei-yi, MENG Yuan, JIN Bai-chuan, JIANG Meng-yun, LIN Zu-hong, HU Li-yang, ZHANG Ting-ting*. Distribution Characteristics and Ecological Risk Assessment of Heavy Metals in Surface Sediments of the North Canal Using ICP-OES[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3912-3918. |
[8] |
DING Peng-fei1, LIU Yu-zhu1, 2*, ZHANG Qi-hang1 , YAN Yi-hui1, YIN Wen-yi1, CHEN Yu1. In Situ Online Detection of Straw Burning Smoke via Laser-Induced Breakdown Spectroscopy Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3292-3297. |
[9] |
LI Ming1, 2, LI Yan-bing3, ZHANG Qiao-chu2, SHI Yu-tao2, CUI Fei-peng2, ZHAO Ying1, 2. Research on Spark Spectrum Signal Processing Based on Ensemble Empirical Mode Decomposition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1923-1928. |
[10] |
ZHONG Qi-xiu1, 2, 3, ZHAO Tian-zhuo1, 2, 3*, LI Xin1, 2, 3, LIAN Fu-qiang1, 3, XIAO Hong1, 3, NIE Shu-zhen1, 3, SUN Si-ning3, 4, FAN Zhong-wei1, 2, 3. Standardized Cross-Validation and Its Optimization for Multi-Element LIBS Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(02): 622-627. |
[11] |
HOU Jia-jia1, ZHANG Lei1, 2*, ZHAO Yang1, YIN Wang-bao1, 2*, DONG Lei1, 2, MA Wei-guang1, 2, XIAO Lian-tuan1, 2, JIA Suo-tang1, 2. Investigation on Resonance and Non-Resonance Doublet Based Self-Absorption-Free LIBS Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(01): 261-265. |
[12] |
RU Ping1, YUAN Cui-fang1, QIAO Hai-xia1, HUANG Yong1, 2*, ZHANG Xue-jiao1, DONG Xin-yu1, Lü Zi-wei1, ZHANG Min1, WANG Yi-rao1, DANG Xian-yang1, CHEN Yun-long1, YANG He-jie3, ZHANG Xiao-jun4, ZHANG Xiao-yun1*. Preparation and Characterization of Bionic Mg-Ag-HA/Gelatin Antibacterial Biocoating Based on FTIR and ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(11): 3352-3358. |
[13] |
SUN Qi-xuan, WEI Xing, LIU Xun, YANG Ting, CHEN Ming-li*, WANG Jian-hua*. Atomic Spectrometry/Elemental Mass Spectrometry in Bioanalytical Chemistry: A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(05): 1340-1345. |
[14] |
LI Wen-cui1, YU Zhan1, FU Yu1, WU You1, XIN Shi-gang2, Lü Yong1, ZHAO Zhen1, WANG Ying1*. Study on Element Distribution in Meteorite Samples by XRF and ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(10): 3261-3263. |
[15] |
YIN Wen-yi1,LIU Yu-zhu1, 2*,QIU Xue-jun3*,ZHOU Feng-bin1,ZHANG Qi-hang1. Rapid Determination of Four Kinds of Incense by Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2957-2961. |
|
|
|
|