|
|
|
|
|
|
Investigation on Resonance and Non-Resonance Doublet Based Self-Absorption-Free LIBS Technique |
HOU Jia-jia1, ZHANG Lei1, 2*, ZHAO Yang1, YIN Wang-bao1, 2*, DONG Lei1, 2, MA Wei-guang1, 2, XIAO Lian-tuan1, 2, JIA Suo-tang1, 2 |
1. Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China
2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract The self-absorption effect in quantitative analysis of LIBS not only reduces the spectral line intensity and increases its width, but also causes saturation effects in calibration, thus affecting the analytical accuracy. A resonance and non-resonance doublet based self-absorption-free laser-induced breakdown spectroscopy (SAF-LIBS) technique is proposed to eliminate its influence. The optically thin time is obtained by matching the measured lines intensity ratios with the theoretical one, and the applicable measurement range is expanded by utilizing the resonance and non-resonance lines. This technique can be divided into two analytical processes: calibration and quantification. The calibration process is: calculating the theoretical intensity ratio of the resonant doublet and non-resonant doublet of the element, and the optically thin time of plasma can be determined by matching these ratios with the measured values at different delay times. Using a series of standard samples to establish a univariate calibration curve of non-resonance line by conventional LIBS and using quasi-optically thin spectra to establish the univariate multi-segment calibration curve of resonance and non-resonance lines by SAF-LIBS. For quantitative measurements, the segment to which the unknown sample belongs is determined firstly by using the conventional LIBS calibration curve, and then the SAF-LIBS spectra and the resonance or non-resonance calibration curve that corresponds to the predetermined segment are used for implementing the quantitative analysis. The calibration results for Cu showed that the optimal delay time increased with the increase of the Cu content, and the resonance lines could be considered as quasi-optically thin only for Cu content no larger than 0.05%. With the increase of element content, the self-absorption effect became so serious that it was impossible to acquire any optically thin spectra. The non-resonance lines could be considered as quasi-optically thin over a wide content range of 0.01%~30%. However, when the content was larger than 50.7%, the optically thin lines could never be captured during the lifetime of plasma. The quantitative analysis of Cu showed that the resonance and non-resonance doublet based SAF-LIBS can effectively avoid the self-absorption effect. The linearity of each segment calibration curve is greater than 0.99, the absolute errors of two unknown samples are 0.01% and 0.1%, respectively, the limit of detection is 1.35×10-4%, and the maximum measurable range is extended to 50.7%.
|
Received: 2018-11-28
Accepted: 2019-03-19
|
|
Corresponding Authors:
ZHANG Lei, YIN Wang-bao
E-mail: k1226@sxu.edu.cn; ywb65@sxu.edu.cn
|
|
[1] Aryal K, Khatri H, Collins R W, et al. Int. J. PhotoEnerg., 2012, 2012: 7863.
[2] Wang Z, Li L Z, West L, et al. Spectrochim Acta B, 2012, 68(2): 58.
[3] Wang Z, Yuan T B, Hou Z Y, et al. Front Phys., 2014, 9(4): 419.
[4] Wang Z, Yuan T B, Lui S L, et al. Front Phys., 2012, 7(6): 708.
[5] Yao S C, Lu J D, Chen K, et al. Appl. Surf. Sci., 2011, 257(7): 3103.
[6] Hai R, Farid N, Zhao D Y, et al. Spectrochim Acta B, 2013, 87(87): 147.
[7] Sherbini A M El, Sherbini Th M El, Hegazy H, et al. Spectrochim Acta B, 2005, 60(12): 1573.
[8] Gornushkin I B, Stevenson C L, Smith B W, et al. Spectrochim. Acta B, 2001, 56(9): 1769.
[9] Sun L, Yu H. Talanta, 2009, 79(2): 388.
[10] Li J M, Guo L B, Li C M, et al. Opt. Letters, 2015, 40(22): 5224.
[11] Tang Y, Li J M, Hao Z Q, et al. Opt. Express, 2018, 26(9): 12121.
[12] Hou J J, Zhang L, Yin W B, et al. J. Anal. At Spectrom., 2017, 32(8): 1519.
[13] Hou J J, Zhang L, Yin W B, et al. Opt. Express, 2017, 25(19): 23024.
[14] St-Onge L, Kwong E, Sabsabi M, et al. J. Pharm. Biomed. Anal., 2004, 36(2): 277.
[15] Kramida A, Ralchenko Y, Reader J. NIST ASD Team, NIST Atomic Spectra Database (ver. 5.4), http://physics.nist.gov/asd (2017). |
[1] |
LIU Jia1, 2, GUO Fei-fei2, YU Lei2, CUI Fei-peng2, ZHAO Ying2, HAN Bing2, SHEN Xue-jing1, 2, WANG Hai-zhou1, 2*. Quantitative Characterization of Components in Neodymium Iron Boron Permanent Magnets by Laser Induced Breakdown Spectroscopy (LIBS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 141-147. |
[2] |
YANG Wen-feng1, LIN De-hui1, CAO Yu2, QIAN Zi-ran1, LI Shao-long1, ZHU De-hua2, LI Guo1, ZHANG Sai1. Study on LIBS Online Monitoring of Aircraft Skin Laser Layered Paint Removal Based on PCA-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3891-3898. |
[3] |
SUN Cheng-yu1, JIAO Long1*, YAN Na-ying1, YAN Chun-hua1, QU Le2, ZHANG Sheng-rui3, MA Ling1. Identification of Salvia Miltiorrhiza From Different Origins by Laser
Induced Breakdown Spectroscopy Combined with Artificial Neural
Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3098-3104. |
[4] |
LIU Shu1, JIN Yue1, 2, SU Piao1, 2, MIN Hong1, AN Ya-rui2, WU Xiao-hong1*. Determination of Calcium, Magnesium, Aluminium and Silicon Content in Iron Ore Using Laser-Induced Breakdown Spectroscopy Assisted by Variable Importance-Back Propagation Artificial Neural Networks[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3132-3142. |
[5] |
LI Chang-ming1, CHEN An-min2*, GAO Xun3*, JIN Ming-xing2. Spatially Resolved Laser-Induced Plasma Spectroscopy Under Different Sample Temperatures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2032-2036. |
[6] |
ZHAO Yang1, ZHANG Lei2, 3*, CHENG Nian-kai4, YIN Wang-bao2, 3*, HOU Jia-jia5, BAI Cheng-hua1. Research on Space-Time Evolutionary Mechanisms of Species Distribution in Laser Induced Binary Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2067-2073. |
[7] |
WANG Bin1, 2, ZHENG Shao-feng2, GAN Jiu-lin1, LIU Shu3, LI Wei-cai2, YANG Zhong-min1, SONG Wu-yuan4*. Plastic Reference Material (PRM) Combined With Partial Least Square (PLS) in Laser-Induced Breakdown Spectroscopy (LIBS) in the Field of Quantitative Elemental Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2124-2131. |
[8] |
HU Meng-ying1, 2, ZHANG Peng-peng1, 2, LIU Bin1, 2, DU Xue-miao1, 2, ZHANG Ling-huo1, 2, XU Jin-li1, 2*, BAI Jin-feng1, 2. Determination of Si, Al, Fe, K in Soil by High Pressure Pelletised Sample and Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2174-2180. |
[9] |
WU Shu-jia1, 2, YAO Ming-yin2, 3, ZENG Jian-hui2, HE Liang2, FU Gang-rong2, ZENG Yu-qi2, XUE Long2, 3, LIU Mu-hua2, 3, LI Jing2, 3*. Laser-Induced Breakdown Spectroscopy Detection of Cu Element in Pig Fodder by Combining Cavity-Confinement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1770-1775. |
[10] |
YUAN Shu, WU Ding*, WU Hua-ce, LIU Jia-min, LÜ Yan, HAI Ran, LI Cong, FENG Chun-lei, DING Hong-bin. Study on the Temporal and Spatial Evolution of Optical Emission From the Laser Induced Multi-Component Plasma of Tungsten Carbide Copper Alloy in Vacuum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1394-1400. |
[11] |
WANG Qiu, LI Bin, HAN Zhao-yang, ZHAN Chao-hui, LIAO Jun, LIU Yan-de*. Research on Anthracnose Grade of Camellia Oleifera Based on the Combined LIBS and Fourier Transform NIR Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1450-1458. |
[12] |
CHAI Shu1, PENG Hai-meng1, WU Wen-dong1, 2*. Acoustic-Based Spectral Correction Method for Laser-Induced Breakdown Spectroscopy in High Temperature Environment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1401-1407. |
[13] |
NING Qian-qian, YANG Jia-hao, LIU Xiao-lin, HE Yu-han, HUANGFU Zhi-chao, YU Wen-jing, WANG Zhao-hui*. Design and Study of Time-Resolved Femtosecond Laser-Induced
Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1083-1087. |
[14] |
DING Kun-yan1, HE Chang-tao2, LIU Zhi-gang2*, XIAO Jing1, FENG Guo-ying1, ZHOU Kai-nan3, XIE Na3, HAN Jing-hua1. Research on Particulate Contamination Induced Laser Damage of Optical Material Based on Integrated Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1234-1241. |
[15] |
SU Yun-peng, HE Chun-jing, LI Ang-ze, XU Ke-mi, QIU Li-rong, CUI Han*. Ore Classification and Recognition Based on Confocal LIBS Combined With Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 692-697. |
|
|
|
|