光谱学与光谱分析 |
|
|
|
|
|
In-Situ Analysis of Solid Steel Samples with Remote Double-Pulse Laser-Induced Breakdown Spectroscopy System |
XIN Yong1, 2, SUN Lan-xiang1*, YANG Zhi-jia1, LI Yang1, CONG Zhi-bo1, QI Li-feng1, ZHANG Peng1, 2, ZENG Peng1 |
1. Laboratory of Industrial Control Network and System, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 2. University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract In order to realize real-time, online monitoring of the component of steel and other metal smelting process, we designed a remote double-pulse laser-induced breakdown spectroscopy (LIBS) analysis system which can realize non-contact remote measurement and component analysis for long distance sample. The paper first tests the system on solid standard steel samples, which provides basis for online monitoring the component of molten steel. The experimental results show:laser focal spot is about 1mm in long distance; double-pulse ablation depth is deeper than single pulse’s; the optimum delay of double-pulse is non-consistent in different distances; the enhancement effect of double- pulse in 3.1 m is better than that in 2.1 m,and the maximum enhancement is 5.19 of Ti(Ⅰ) 319.99 nm; the calibration curve of R2 is about 0.99, RSD being less than 5%, RMSE being less than 0.021%, LOD being less than 500 ppm for most elements in 2.1 m, which is better than that in 3.1 m.
|
Received: 2015-05-05
Accepted: 2015-10-12
|
|
Corresponding Authors:
SUN Lan-xiang
E-mail: sunlanxiang@sia.cn
|
|
[1] Vrenegor J, Noll R, Sturm V. Spectrochimica Acta B: Atomic Spectroscopy, 2005, 60(7-8): 1083. [2] Capitelli F, Colao F, Provenzano M R, et al. Geoderma, 2002, 106(1): 45. [3] Gondal M A, Hussain T. Talanta, 2007, 71(1): 73. [4] Cabalin L M, Laserna J J. SpectrochimActa B: Atomic Spectroscopy, 1998, 53(5): 723. [5] Ferioli F, Buckley S G. Combustion and Flame, 2006, 144(3): 435. [6] Yuan Tingbi, Wang Zhe, Li Lizhi, et al. Applied Optics, 2012, 51(7): 22. [7] Feng Yuan, Yang Jiajun, Cui Zhifeng, et al. Applied Optics, 2010, 49(13): C70. [8] Guo Lianbo, Zeng Xiaoyan, Lu Yongfeng, et al. Optics Express, 2011, 19(15): 14067. [9] Lu Yuan, Vassilia Zorba, Zheng Ronger, et al. Journal of Analytical Atomic Spectrometry, 2013, 28: 743. [10] Zhou Weidong, Li Kexue, Shen Qinmei. Optics Express, 2010, 18(3): 2573. [11] Gruber J, Heitz J, Strasser H, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 685. [12] Noll R, Bette H, Brysch A, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 637. [13] Palanco S, Conesa S, Laserna J. Journal of Analytical Atomic Spectrometry, 2004, 19(4): 462. [14] SUN Lan-xiang, YU Hai-bin, CONG Zhi-bo, et al(孙兰香, 于海斌, 丛智博,等). Chinese Journal of Scientific Instrument(仪器仪表学报), 2011, 32(11): 2602. [15] SUN Lan-xiang, YU Hai-bin, XIN Yong, et al(孙兰香, 于海斌, 辛 勇,等). Chinese Journal of Lasers(中国激光), 2011, 38(9): 0915002. [16] Sturm V, Vrenegor J, Noll R, et al. Journal of Anlytical Atomic Spectrometry, 2004, 19(4): 451. [17] Sorrentino F, Carelli G, Francesconi F, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(10): 1068. [18] Gaona I, Lucena P, Moros J, et al. Journal of Analytical Atomic Spectrometry, 2013, 28(6): 810. [19] Maurice S, Wiens R, Saccoccio M, et al. Space Science Reviews, 2012, 170(1-4): 95. [20] Sallé B, Mauchien P, Maurice S. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(8): 739. [21] Matiaske A, Gornushkin I, Panne U. Anal. Bioanal. Chem., 2012, 402(8): 2597. |
[1] |
ZHANG Xing-long1, LIU Yu-zhu1, 2*, SUN Zhong-mou1, ZHANG Qi-hang1, CHEN Yu1, MAYALIYA·Abulimiti3*. Online Monitoring of Pesticides Based on Laser Induced Breakdown
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1711-1715. |
[2] |
YANG Lin-yu1, 2, 3, DING Yu1, 2, 3*, ZHAN Ye4, ZHU Shao-nong1, 2, 3, CHEN Yu-juan1, 2, 3, DENG Fan1, 2, 3, ZHAO Xing-qiang1, 2, 3. Quantitative Analysis of Mn and Ni Elements in Steel Based on LIBS and GA-PLS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1804-1808. |
[3] |
TIAN Xi1, 2, 3, CHEN Li-ping2, 3, WANG Qing-yan2, 3, LI Jiang-bo2, 3, YANG Yi2, 3, FAN Shu-xiang2, 3, HUANG Wen-qian2, 3*. Optimization of Online Determination Model for Sugar in a Whole Apple
Using Full Transmittance Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1907-1914. |
[4] |
HE Ya-xiong1, 2, ZHOU Wen-qi1, 2, ZHUANG Bin1, 2, ZHANG Yong-sheng1, 2, KE Chuan3, XU Tao1, 2*, ZHAO Yong1, 2, 3. Study on Time-Resolved Characteristics of Laser-Induced Argon Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1049-1057. |
[5] |
LI Qing-bo1, WEI Yuan1, CUI Hou-xin2, FENG Hao2, LANG Jia-ye2. Quantitative Analysis of TOC in Water Quality Based on UV-Vis Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 376-380. |
[6] |
LI Ming-liang1, DAI Yu-jia1, QIN Shuang1, SONG Chao2*, GAO Xun1*, LIN Jing-quan1. Influence of LIBS Analysis Model on Quantitative Analysis Precision of Aluminum Alloy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 587-591. |
[7] |
GONG Zheng1, LIN Jing-jun2*, LIN Xiao-mei3*, HUANG Yu-tao1. Effect of Heating and Cooling on the Characteristic Lines of Al During Melting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 598-602. |
[8] |
QIN Shuang1, LI Ming-liang1, DAI Yu-jia1, GAO Xun1*, SONG Chao2*, LIN Jing-quan1. The Accuracy Improvement of Fe Element in Aluminum Alloy by Millisecond Laser Induced Breakdown Spectroscopy Under Spatial Confinement Combined With Support Vector Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 582-586. |
[9] |
WANG Ya-wen1,2,3, ZHANG Yong4, CHEN Xiong-fei1,2,3, LIU Ying1,2,3, ZHAO Zhen-yang4, YE Ming-guo5, XU Yu-xing6, LIU Peng-yu1,2,3*. Quantitative Analysis of Nickel-Based Superalloys Based on a Remote LIBS System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 603-608. |
[10] |
YU Feng-ping1, LIN Jing-jun1*, LIN Xiao-mei1, 3*, LI Lei1,2*. Detection of C Element in Alloy Steel by Double Pulse Laser Induced Breakdown Spectroscopy With a Multivariable GA-BP-ANN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 197-202. |
[11] |
REN Shuang-zan1, WANG Jing-wei2, GAO Liang-liang2, ZHU Hong-mei1, WU Hao1, LIU Jing1, TANG Xiao-jun2*, WANG Bin2. A Novel Compensation Method of Gas Absorption Spectrum Based on Time-Sharing Scanning Spectra and Double Gas Cell Switching[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3438-3443. |
[12] |
XU Yu-ting1, SUN Hao-ran2, GAO Xun1*, GUO Kai-min3*, LIN Jing-quan1. Identification of Pork Parts Based on LIBS Technology Combined With PCA-SVM Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3572-3576. |
[13] |
DENG Fan1, HU Zhen-lin2, CUI Hao-hao2, ZHANG Deng2, TANG Yun4, ZHAO Zhi-fang2, ZENG Qing-dong2, 3*, GUO Lian-bo2*. Progress in the Correction of Self-Absorption Effect on Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 2989-2998. |
[14] |
YOU Wen1, XIA Yang-peng1, HUANG Yu-tao1, LIN Jing-jun2*, LIN Xiao-mei3*. Research on Selection Method of LIBS Feature Variables Based on CART Regression Tree[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3240-3244. |
[15] |
YANG Wen-feng1*, QIAN Zi-ran1, CAO Yu2, WEI Gui-ming1, ZHU De-hua2, WANG Feng3, FU Chan-yuan1. Research on the Controllability of Aircraft Skin Laser Paint Remove Based on Laser-Induced Breakdown Spectrum and Composition Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3233-3239. |
|
|
|
|