光谱学与光谱分析 |
|
|
|
|
|
Application of Extreme-Ultraviolet Ar Spectra Analysis in the Study of Divertor Impurity Screening in EAST Tokamak |
ZHANG Peng-fei1, 2, ZHANG Ling1*, XU Zong1, 2, DUAN Yan-min1, WU Cheng-rui1, 2, HUANG Juan1, WU Zhen-wei1, GUO Hou-yang1, 3, HU Li-qun1 |
1. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China 2. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230031, China 3. General Atomics, P.O. Box 85608, San Diego, California 92186, USA |
|
|
Abstract Divertor impurity injection on Tokamak is the most important means to achieve divertor impurity screening efficiency. In this paper, a fast-response extreme-ultraviolet (EUV) spectrometer is used to monitor the Ar emission lines during the EAST(Experimental Advanced Superconducting Tokamak)divertor Ar injection experiment. Based on the NIST(National Institute of Standards and Technology)atomic spectrum database, the emission lines from different ionized Ar ions in 2~50 nm wavelength range, e.g. Ar Ⅳ, Ar Ⅳ-Ⅺ and Ar ⅩⅣ-ⅩⅥ, are being identified. Ar ⅩⅥ 35.39 nm and Ar Ⅳ 44.22 nm with the ionization energy of 918.4 and 59.6 eV respectively are being monitored during the experiment with Ar puffing to observe the behavior of Ar impurities in different regions in plasmasimultaneously. The preliminary analysis on divertor impurity screening efficiency is carried outwith the time evolution of intensities of two Ar emission lines. The results of experiment puffing from the same gas puffing inlet (e. g. from lower outer target inlet) and withdifferent plasma configurations (e. g. lower single null, upper single null) show that the screening effect on the impurity injected from the divertor region is better thanfrom the main plasma region; the screening effect of lower divertor and particle pumping by internal cryopump installed in lower divertor is stronger than upper divertor.
|
Received: 2015-05-16
Accepted: 2015-10-05
|
|
Corresponding Authors:
ZHANG Ling
E-mail: zhangling@ipp.ac.cn
|
|
[1] Pitcher C S, Stangeby P C. Plasma Physics and Controlled Fusion, 1997, 39(6): 779. [2] McCracken G M, Granetz R S, Lipschultz B, et al. Journal of Nuclear Materials, 1997, 241: 777. [3] McCracken G M, Lipschultz B, LaBombard B, et al. Physics of Plasmas, 1997, 4(5): 1681. [4] Li J, Guo H Y, Wan B N, et al. Nature Physics, 2013, 9(12): 817. [5] Zhou Z, Yao D, Cao L. Journal of Fusion Energy, 2015, 34(1): 93. [6] HUANG Jian-feng, WU Zhen-wei, WANG Ling, et al(黄剑锋, 吴振伟, 王 玲, 等). Vacuum(真空), 2014, 3: 001. [7] WANG Wen-zhang, LUO Guang-nan, YANG Zhong-shi, et al(王文章, 罗广南, 杨钟时, 等). Nuclear Fusion and Plasma Physics(核聚变与等离子体物理), 2016, 36(1): 42. [8] ZHANG Wei, SHI Yue-jiang, WANG Qiu-ping, et al(张 伟, 石跃江, 王秋平, 等). Nuclear Science and Techniques(核技术), 2011(08): 613. [9] Kramida A, Ralchenko Yu, Reader J,et al. NIST Atomic Spectra Database (version 5.2), National Institute of Standards and Technology, Gaithersburg, MD, 2014. [10] Katai R, Morita S, Goto M. Journal of Quantitative Spectroscopy & Radiative Transfer, 2007, 107(1): 120. [11] Duan Y M, Hu L Q, Chen K Y, et al. Journal of Nuclear Materials, 2013, 438: S338. |
[1] |
LIU Yan-de, WANG Shun. Research on Non-Destructive Testing of Navel Orange Shelf Life Imaging Based on Hyperspectral Image and Spectrum Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1792-1797. |
[2] |
MA Ping1, 2, Andy Hsitien Shen1*, ZHONG Yuan1, LUO Heng1. Study on UV-Vis Absorption Spectra of Jadeite From Different Origins[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1827-1831. |
[3] |
CAO Yao-yao1, 2, 4, LI Xia1, BAI Jun-peng2, 4, XU Wei2, 4, NI Ying3*, DONG Chuang2, 4, ZHONG Hong-li5, LI Bin2, 4*. Study on Qualitative and Quantitative Detection of Pefloxacin and
Fleroxacin Veterinary Drugs Based on THz-TDS Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1798-1803. |
[4] |
LI Shu-jie1, LIU Jie1, DENG Zi-ang1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Study of Germinated Rice Seeds by FTIR Spectroscopy Combined With Curve Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1832-1840. |
[5] |
WEI Si-ye1, 2, FAN Xing-cheng3, MAO Han1, 2, CAO Tao4, 5, CHENG Ao3, FAN Xing-jun3*, XIE Yue3. Abundance and Spectral Characteristics of Molecular Weight Separated Dissolved Organic Matter Released From Biochar at Different Pyrolysis Temperatures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1809-1815. |
[6] |
WANG Gan-lin1, LIU Qian1, LI Ding-ming1, YANG Su-liang1*, TIAN Guo-xin1, 2*. Quantitative Analysis of NO-3,SO2-4,ClO-4 With Water as Internal Standard by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1855-1861. |
[7] |
XIE Yu-yu1, 2, 3, HOU Xue-ling1, CHEN Zhi-hui2, AISA Haji Akber1, 3*. Density Functional Theory Studies on Structure and Spectra of Salidroside Molecule[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1786-1791. |
[8] |
YANG Lin-yu1, 2, 3, DING Yu1, 2, 3*, ZHAN Ye4, ZHU Shao-nong1, 2, 3, CHEN Yu-juan1, 2, 3, DENG Fan1, 2, 3, ZHAO Xing-qiang1, 2, 3. Quantitative Analysis of Mn and Ni Elements in Steel Based on LIBS and GA-PLS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1804-1808. |
[9] |
HE Nian, SHAN Peng*, HE Zhong-hai, WANG Qiao-yun, LI Zhi-gang, WU Zhui. Study on the Fractional Baseline Correction Method of ATR-FTIR
Spectral Signal in the Fermentation Process of Sodium Glutamate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1848-1854. |
[10] |
WANG Bin1, 2, ZHENG Shao-feng2, LI Wei-cai2, ZHONG Kang-hua2, GAN Jiu-lin1, YANG Zhong-min1, SONG Wu-yuan3*. Determination of Rare Earth Elements in Imported Copper Concentrate by Inductively Coupled Plasma Mass Spectrometry With High Matrix
Injection System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1822-1826. |
[11] |
PENG Yan-fang1, WANG Jun1, WU Zhi-sheng2*, LIU Xiao-na3, QIAO Yan-jiang2*. NIR Band Assignment of Tanshinone ⅡA and Cryptotanshinone by
2D-COS Technology and Model Application Tanshinone Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1781-1785. |
[12] |
LI Qing1, 2, XU Li1, 2, PENG Shan-gui1, 2, LUO Xiao1, 2, ZHANG Rong-qin1, 2, YAN Zhu-yun3, WEN Yong-sheng1, 2*. Research on Identification of Danshen Origin Based on Micro-Focused
Raman Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1774-1780. |
[13] |
TIAN Xue1, CHE Qian1, YAN Wei-min1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Discrimination of Millet Varieties and Producing Areas Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1841-1847. |
[14] |
WANG Yi-ya1, WANG Yi-min1*, GAO Xin-hua2. The Evaluation of Literature and Its Metrological Statistics of X-Ray Fluorescence Spectrometry Analysis in China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1329-1338. |
[15] |
FU Qiu-yue1, FANG Xiang-lin1, ZHAO Yi2, QIU Xun1, WANG Peng1, LI Shao-xin1*. Research Progress of Pathogenic Bacteria and Their Drug Resistance
Detection Based on Surface Enhanced Raman Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1339-1345. |
|
|
|
|