光谱学与光谱分析 |
|
|
|
|
|
Study on the Extraction, Geometry Structure and Spectral Characterization of Piperine Alkaloid |
LI Xin1, SHI Jin-ru3, YANG Meng-shi1, LU Yi1, CHEN Liang1, CAO Hua-ru1,2* |
1. School of Engineering, Zhejiang A&F University, Lin’an 311300, China 2. Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Lin’an 311300, China 3. College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China |
|
|
Abstract Using pepper fruit of Hainan as raw material and 95% ethanol as solvent, the alkaloid in pepper is extracted with reflux method in this paper. The piperonylic acid is removed by adjusting the pH; the fat-soluble substance being removed by adding ethyl ether; the piperine alkaloid being purified with acetone by recrystallization anddetected with HPLC, as well as characterized with IR. The characterizations of piperine are discussed. Meanwhile, B3LYP/6-31G (d,p) method of DFT is applied to optimize the structure, calculate frequency and energy of pepper alkaloid, then obtain four kinds of configurations (configuration Ⅰ as Piperine, configuration Ⅱ as Iso Piperine, configuration Ⅲ as Iso Chavicine, configuration Ⅳ as Chavicine) with 64 kinds of stability conformational structure. The distribution of the thermodynamic equilibrium of stable conformations of four kinds of configurations of the molecular is calculated with Gibbs free energy at room temperature (298.15 K). And IR spectra of the experimental were compared with the IR spectra of the theoretical. The results show that the alkaloid extracted from pepper is mainly conformer 1 in configuration Ⅰ, that is, Piperine; after purifying, the content of piperine is 7% with the purity of 99%. With analysis, the methods of extraction, separation and purification of piperine in this paper achieve good results. Established models are in good agreement with the experimental results. This research is of great significance in guiding extracting process, building structural model and the characterization and application of piperine.
|
Received: 2015-04-24
Accepted: 2015-08-16
|
|
Corresponding Authors:
CAO Hua-ru
E-mail: caohuaru@yeah.net
|
|
[1] Pino J,Rodriguez-Feo G,Borges P,et al. Die Nahrung,1990,34(6): 555. [2] Koul I B,Kapil A. Planta Med.,1993,59(5): 413. [3] LONG Yu-zhou(龙宇宙). Processing and Utilizing of Product of Tropical Unique Spice and Beverage Crops(热带特色香辛饮料作物农产品加工与利用). Haikou: Hainan Press(海口: 海南出版社),2007. 63. [4] WEI Kun,DOU De-qiang,PEI Yu-ping,et al(韦 琨,窦德强,裴玉萍,等). Chinese Materia Medica(中国中药杂志),2002,27(5): 328. [5] Govindarajan V S. Crit. Rev. Food Sci. Nutr.,1977,9: 117. [6] Mittal R,Gupta R L. Methods Find Exp. Clin. Pharmacol.,2000,22(5): 271. [7] Vijayakumar R S,Surya D,Nalini N. Redox. Rep.,2004,9(2): 105. [8] Ramasamy S V,Namasivayam N. Cell Biochemicalistry and Function,2006,24(6): 491. [9] Lee C S,Han E S,Kim Y K. Eur. J. Pharmacol.,2006,537(1-3): 37. [10] Bajad S,Bedi K L,Singla A K,et al. Planta Med.,2001,67(3): 284. [11] Bajad S,Bedi K L,Singla A K,et al. Planta Med.,2001,67(2): 176. [12] Capasso R,Izzo A A,Borrelli F,et al. Life Science,2002,71(19): 2311. [13] Lee S A,Hong S S,Han X H,et al. Chem. Pharm. Bull.(Tokyo),2005,53(7): 832. [14] Kong L D,Cheng C H,Tan R X. J. Ethnopharmacol,2004,91(2-3): 351. [15] Pathak N,Khandelwal S. Biochemieal Pharmacol,2006,72(4): 486. [16] Dogra R K,Khalma S,Shanker R. Toxicology,2004,196(3): 229. [17] Pradeep C R,Kuttan G. Clin. Exp. Metastas.,2002,19(8): 703. [18] Menon A N,Padmakumari K. J. Essent Oil Res.,2005,2(17): 153. [19] Bai Y F,Xu H. Acta Pharmacologica Sinica,2000,21(4): 357. [20] Pradeep C R,Kuttan G. Int Immunopharmacol,2004,4(14): 1795. [21] Selvendiran K,Banu S M,Sakthisekaran D. Clin. Chim. Acta,2004,350(1-2): 73. [22] Sunila E S,Kuttan G. J. Ethnopharmacol,2004,90 (2-3): 339. [23] Khajuria A,Thusu N,Zutshi U. Phytomedicine,2002,9(3): 224. [24] Subramanian R,Subbramaniyan P,Noorul Ameen J,et al. Arabian Journal of Chemistry,2011,doi:10.1016/j.arabjc.2011.06.022. [25] MENG Zhao-hui,WANG Zhen-hui,ZHOU Shu-ping(孟召辉,汪振辉,周漱萍). J. Anal. Chem.(分析化学),1994,22(12): 1163. [26] Kanaki N,Dave M,Padh H,et al. J. Nat. Med.,2008,62: 281. [27] FAN Xiu-yu,YIN Ai-qun,SU Wei-guo,et al(范秀玉,尹爱群,苏维国,等). Drug Standards of China(中国药品标准),2004,5(5): 28. [28] Girija R,Vilas G G. Ind. Eng. Chem. Res.,2002,41(10): 2521. [29] CHEN Jian-hua,WENG Shao-wei,LI Zhong,et al(陈建华,翁少伟,李 忠,等). Fine Chemicals(精细化工),2010,27(10): 991. [30] Cao X J,Ye X M,Lu Y B,et al. Anal. Chim. Acta,2009,640: 47. [31] Ternes W,Krause E L. Anal. Bioanal. Chem.,2002,374: 155. [32] Kozukue N,Park M S,Choi S H,et al. J. Agric. Food Chem.,2007,55: 7131. [33] Huang Z J,Yu W B,Lin Z J. J. Mol. Struct. THEOCHEM,2006,81: 7. [34] Zhang M L,Huang Z J,Lin Z J. J. Chem. Phys.,2005,122: 134313. [35] Huang Z J,Yu W B,Lin Z J. J. Mol. Struct. THEOCHEM,2006,758:195. [36] Ling S L,Yu W B,Huang Z J,et al. J. Phys. Chem. A,2006,110: 12282. [37] Huang Z J,Lin Z J. J. Phys. Chem. A,2005,109: 2656. [38] Yu W B,Lin Z J,Huang Z J. Chem. Phys. Chem.,2006,7: 828. [39] Yu W B,Liang L,Lin Z J,et al. J. Comput. Chem.,2009,30: 589. [40] Yu W B,Wu Z Q,Chen H B,et al. J. Comput. Chem.,2009,30: 2105. [41] Yu W B,Xu X E,Li H B,et al. J. Phys. Chem. B,2012,116: 2269. [42] LI Xin,YANG Meng-shi,YE Zhi-peng,et al(李 鑫,羊梦诗,叶志鹏,等). Acta Phys. Sin.(物理学报),2013,15: 156103-1. [43] Li X,Yu S,Yang M S,et al. Physica E,2014,57: 63. [44] LI Xin,ZHANG Liang,YANG Meng-shi,et al(李 鑫,张 梁,羊梦诗,等). Acta Phys. Sin.(物理学报),2014,7: 076102-1. [45] LI Xin,YANG Meng-shi,XU Can,et al(李 鑫,羊梦诗,徐 灿,等). Spectroscopy and Spectal Analysis(光谱学与光谱分析),2014,34(9): 2331. [46] Li X,Yang M S,Shi X,et al,Physica E,2015,69: 273. [47] Von Weizsacker C F,Z. Phys.,1935,96: 431. [48] Becke A D. Phys. Rev. A,1988,38: 3098. [49] Lee C,Yang W,Parr R G. Phys. Rev. B,1998,37: 785. [50] Frisch M J,Trucks G W,Schlegel H B,et al. Gaussian09, Revision C. 01, Gaussian, Inc., Wallingford CT,2009. [51] Stepanian S G,Reva I D,Radchenko E D,et al. J. Phys. Chem. A,1999,103:4404. |
[1] |
LI Shu-jie1, LIU Jie1, DENG Zi-ang1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Study of Germinated Rice Seeds by FTIR Spectroscopy Combined With Curve Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1832-1840. |
[2] |
ZHANG Yan-ru1, 2, SHAO Peng-shuai1*. Study on the Effects of Planting Years of Vegetable Greenhouse on the
Cucumber Qualties Using Mid-IR Spectroscopoy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1816-1821. |
[3] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[4] |
WANG Xue-pei1, 2, ZHANG Lu-wei1, 2, BAI Xue-bing3, MO Xian-bin1, ZHANG Xiao-shuan1, 2*. Infrared Spectral Characterization of Ultraviolet Ozone Treatment on Substrate Surface for Flexible Electronics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1867-1873. |
[5] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[6] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[7] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[8] |
XIE Yu-yu1, 2, 3, HOU Xue-ling1, CHEN Zhi-hui2, AISA Haji Akber1, 3*. Density Functional Theory Studies on Structure and Spectra of Salidroside Molecule[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1786-1791. |
[9] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[10] |
PENG Yan-fang1, WANG Jun1, WU Zhi-sheng2*, LIU Xiao-na3, QIAO Yan-jiang2*. NIR Band Assignment of Tanshinone ⅡA and Cryptotanshinone by
2D-COS Technology and Model Application Tanshinone Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1781-1785. |
[11] |
TIAN Xue1, CHE Qian1, YAN Wei-min1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Discrimination of Millet Varieties and Producing Areas Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1841-1847. |
[12] |
HU Bin1, 2, FU Hao1, WANG Wen-bin1, ZHANG Bing1, 2, TANG Fan3*, MA Shan-wei1, 2, LU Qiang1, 2*. Research on Deep Sorting Approach Based on Infrared Spectroscopy for High-Value Utilization of Municipal Solid Waste[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1353-1360. |
[13] |
YAN Ling-tong, LI Li, SUN He-yang, XU Qing, FENG Song-lin*. Spectrometric Investigation of Structure Hydroxyl in Traditional Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1361-1365. |
[14] |
WANG Li-qi1, YAO Jing1, WANG Rui-ying1, CHEN Ying-shu1, LUO Shu-nian2, WANG Wei-ning2, ZHANG Yan-rong1*. Research on Detection of Soybean Meal Quality by NIR Based on
PLS-GRNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1433-1438. |
[15] |
WANG Yan-ru, TANG Hai-jun*, ZHANG Yao. Study on Infrared Spectral Detection of Fuel Contamination in Mobil Jet Oil II Lubricating Oil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1541-1546. |
|
|
|
|