光谱学与光谱分析 |
|
|
|
|
|
Influence of Nitrogen Flow Rate on the Structure and Luminescence Properties of Silicon-Rich Silicon Nitride Film Materials in a High Hydrogen Atmosphere |
ZHANG Lin-rui, ZHOU Bing-qing*, ZHANG Na,LU Xiao-cui, WUREN Tu-ya, GAO Ai-ming |
College of Physics and Electron Information of Inner Mongolia Normal University, Key Lab of Physics and Chemistry for Functional Material, Huhhot 010022, China |
|
|
Abstract High hydrogenated silicon-rich silicon nitride(SiNx∶H)thin films are deposited on the glass and monocrystalline silicon(110) substrates by plasma enhanced chemical vapor deposition using SiH4 and H2 as the main reaction gas with doping the N2. The ultraviolet-visible absorption spectrum, Fourier transform infrared absorption spectroscopy, Raman spectroscopy and photoluminescence spectrum are applied to characterize the changes of the band gap, the microstructure and related photoluminescence properties of the nitrogen-doped silicon film. It shows that hydrogen atoms can suppress the defects in the film and make film present silicon-rich under the low SiH4/H2 flow ratio, but they are not beneficial to the formation of silicon clusters in a hydrogen atmosphere. With the incorporation of nitrogen atoms, all the content of Si-N bonds, band gap and the degree of disorder in the microstructure of the films increase, films produce light emission related to the defect states. While the content of doped nitrogen atoms are further increased, it appears the band tail emission. Then the relationships between several light emissions and microstructure to be discussed. These results are useful for the optimization of light emission and microstructure for the silicon-rich silicon nitride film material prepared by PECVD.
|
Received: 2015-05-20
Accepted: 2015-09-25
|
|
Corresponding Authors:
ZHOU Bing-qing
E-mail: zhoubq@imnu.edu.cn
|
|
[1] So Y H, Huang S J, Conibeer G, et al. Thin Solid Films, 2011, 519: 5408. [2] JIANG Li-hua, ZENG Xiang-bin, ZHANG Xiao(姜礼华,曾祥斌,张 笑). Acta Phys. Sin.(物理学报),2012, 61(1):16803. [3] Park N M,Choi C J,Seong T Y,et al. Phys. Rev. Lett., 2001, 86(7):1355. [4] Kim T W,Cho C H,Kim B H,et al. Appl. Phys. Lett.,2006, 88(12):123102-1. [5] Wang M,Xie M. Ferraioli L,et al. J. Appl. Phys., 2008, 104(8): 083504-1. [6] Wang M H, Yang D R, Li D S, et al. J. Appl. Phys., 2007, 101(10): 103504-1. [7] Molinari E M, Rinnert H, Vergnat M. J. Phys. D: Appl. Phys., 2008, 41: 175410. [8] Lee K M, Kim T H, Hwang J D, et al. Scripta Materialia, 2009, 60: 703. [9] Kim B H, Cho C H, Kim T W, et al. Appl. Phys. Lett.,2005, 86(9): 091908-1. [10] Mckel H, Lüdemann R. J. Appl. Phys., 2002, 92(5): 2602. [11] Molinari M, Rinnert H, Vergnat M. Appl. Phys. Lett., 2001, 79(14): 2172. [12] YU Wei, LI Ya-chao, DING Wen-ge, et al(于 威,李亚超,丁文革,等). Acta Phys. Sin.(物理学报), 2008, 57(6): 3661. [13] Wang M H, Li D S, Yuan Z Z, et al. Appl. Phys. Lett.,2007, 90(13): 131903-1. [14] Molinari M, Rinnert H, Vergnat M. J. Appl. Phys.,2007, 101(12): 123532-1. [15] He Y L, Yin C Z, Cheng G X, et al. Appl. Phys.,1994, 75(2): 797. [16] Langford A A, Fleet M L, Nelson B P, et al. Phys. Rev. B,1992, 45(23): 13367. [17] Park N M, Kim S H, Sung G Y, et al. Chemical Vapor Deposition,2002, 8(6): 254. [18] Wang W X, Li D H, Liu Z C, et al. Appl. Phys. Lett., 1993, 62(3): 321. [19] LIAO Wu-gang, ZENG Xiang-bin, WEN Guo-zhi, et al(廖武刚,曾祥斌,文国知,等). Acta Phys. Sin.(物理学报), 2013, 62(12): 126801-1. [20] Zhang Longlong, Zhou Bingqing,Zhang Linrui, et al. Bulletin of the Chinese Ceramic Society,2014, 33(4): 757 [21] ZOU Xiang-yun, FAN Jin-she, JIANG Yi-xiang(邹祥云,范进社,蒋一祥). Acta Phys. Sin.(物理学报), 2012, 64(14):148106-1. [22] ZHANG Shi-bin, LIAO Xian-bo, AN Long, et al(张世斌,廖显伯,安 龙等). Acta Phys. Sin.(物理学报)2002, 51(8):1811. [23] Hao H L, Wu L K, Shen W Z. Appl. Phys. Lett., 2007, 91(20):201922-1. [24] Mo C M,Zhang L D,Xie C Y,et alT. J. Appl. Phys., 1993, 73(10): 5185. [25] Mercaldo L V, Esposito E M, Veneri P D, et al. J. Appl. Phys., 2011, 109(9): 093512. [26] Cullis A G, Canham L T, Calcott P D J. J. Appl. Phys., 1997, 82(3): 909. |
[1] |
LING Xue1, WU Meng-lei1, LIAO Yuan1, ZHOU Yi-chen2. Nondestructive Techniques in the Research and Preservation of Cultural Relics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2026-2031. |
[2] |
LI Xiao-jun, HE Xian-li, SONG Rui-juan. Theoretical Study of Structures, Stabilities, and Infrared Spectra of the Alkali-Metal (Li2F)nM (M=Li, Na, K; n=1, 2) Clusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2064-2069. |
[3] |
JIAN Kuo1,2,LIU Shun-xi4,CHEN Yi-lin3,FU Xue-hai2,3*. Infrared Spectroscopic Study on the Structure Evolution of Low Rank Coal and Its Correlation with Carbon Isotope of Alkane Gas in Pyrolysis Process[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2070-2075. |
[4] |
HE Qing1, JIANG Qin1, XING Li-da2, 3, AN Yan-fei1, HOU Jie4, HU Yi5. Microstructure and Raman Spectra Characteristics of Dinosaur Eggs from Qiyunshan, Anhui Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2143-2148. |
[5] |
SU Ya-jing, FAN Ting-ting, ZHANG Mei-na, LI Xia*. 4,4’-Bipyridine Bridged Chain Zn(Ⅱ) Complex: Synthesis, Crystal Structure and Fluorescence Sensitization for Tb (Ⅲ) Ion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2170-2174. |
[6] |
WU Cheng-li, WANG Bei-bei, TAO Ran, FANG Liu-wei, LI Han-xu. Study of Mineral Structure Transformation of Coal Ash with High Ash Melting Temperature by XPS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2296-2301. |
[7] |
ZHENG Xiao-jun, GAO Li-juan, ZHAO Xue-fei*, ZHU Ya-ming, CHENG Jun-xia. Spectral Analysis of Molecular Structure of Water-Soluble Pitch[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1819-1823. |
[8] |
HAN Yue-xin1, JIN Jian-ping1, 2*, LI Hui3*, LEI Da-shi3, WANG Yu-bin3, GU Xiao-tian1. Study on the Mechanism of Oxidation Roasting of Carbonaceous Fine-Grained Gold Ores Based on XRD and SEM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1592-1598. |
[9] |
DENG Yu-qing, CHEN Tao*. Influence Factors of Transparency on Shuikeng Stone from Shoushan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1400-1405. |
[10] |
XING Ying-ying. The Thermal Variation Behavior of “Water” in Nominally Anhydrous Jadeite Mineral[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1036-1043. |
[11] |
CHANG Zhen1, 2, ZHAO Min-jie1*, WANG Yu1, SI Fu-qi1, ZHOU Hai-jin1, LIU Wen-qing1. Study on the Spectral Features of Space-Borne Aluminum Diffuser[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 997-1000. |
[12] |
YUAN Ting-ting, HUANG Peng, LI Han-yang, SHANG Yan-ting, YANG Xing-hua, ZHANG Yang, LI Han-yang, ZHAO En-ming*. Design and Research for a Kind of Optical Fiber Sensor Based on Extroradinary Optical Tramsimission Phenomenon[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 681-684. |
[13] |
CHEN Hang1, MEI Chang-tong1, LUO Wen2, XU Mo-su3, REN Yi4, YIN Wen-xuan4*. Comparative Study on Microstructure of Flocculant/Catkin with Natural Fiber[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 929-932. |
[14] |
LIU Jin1, YANG Jian-jun2, Yongfeng HU3, LI Ju-mei1, ZHANG Xiu4, MA Yi-bing1*. Molecular Speciation of Phosphorus in an Organically Bound Phosphorus Fertilizer with High Phytoavailability Characterized by Multiple Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 958-962. |
[15] |
CHEN Miao, PENG Shu-ming*, ZHOU Xiao-song, LONG Xing-gui, FU Yi-bei. Applications of Infrared and Raman Spectroscopy in Metal Hydrides and Deuterides Structure Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 8-14. |
|
|
|
|