光谱学与光谱分析 |
|
|
|
|
|
Rapid Determination of Cu and Zn in PM2.5 with Wavelength Dispersive X-Ray Fluorescence Spectrometry |
WANG Guang-xi, LI Dan*, GE Liang-quan, CHEN Cheng, LAI Wan-chang, ZHAI Juan, LAN Yong, HU Jie, LONG Fei |
The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China |
|
|
Abstract This paper proposes the analyzing method of adopting wavelength dispersive X-ray fluorescence spectrometry to measure the content of Cu and Zn in PM2.5. PTFE membrane is used to prepare standard samples and atmospheric particulate samples; a research into sample cup’s structure,using polypropylene film of 6.7 μm to help to improved sample cup to package atmospheric particulate samples. The improved sample cup is used to measure the content of Cu and Zn in atmospheric particulate, which can obviously reduce background, improve peak/background ratio and decrease detection limit to target element; discussion is made on the measurement condition of Cu and Zn in PM2.5: taking Kα line as analysis line of Cu and Zn, selecting PX10 as analyzer crystal, using 300 μm pitch collimator, adopting scintillation detector for the Kα of Zn, applying the integrating of flow-gas proportional counter and closed-end proportional counter to the Kα of Cu, setting 50 kV, 50 mA as operating voltage and current. The prepared Cu and Zn standard sample is used to set up working curve, the results show that their linear correlations are better, accuracy are higher, relative standard deviations of Cu and Zn are 2.43% and 2.00%(n=8), detection limit are 0.028 and 0.021 μg·cm-2respectively, and analysis of the single sample only need 60 s. To sum up, this method can quickly and accurately analyze the content of Cu and Zn in PM2.5, and provide scientific basis for study the element content characteristics and source apportionment.
|
Received: 2015-08-07
Accepted: 2015-11-29
|
|
Corresponding Authors:
LI Dan
E-mail: lidan08@cdut.cn
|
|
[1] YANG Wei-tao, NI Bang-fa, WANG Ping-sheng, et al(杨伟涛, 倪邦发, 王平生, 等). Atomic Energy Science and Technology (原子能科学技术), 2007, 41(2): 228. [2] HUANG Chun-feng, JI Dong(黄春锋, 冀 东). Heilongjiang Science and Technology Information(黑龙江科技信息), 2012, (20): 105. [3] GENG Ning-bo, WANG Jia, XU Yi-fei, et al(耿柠波, 王 佳, 徐艺斐, 等). Journal of Tianjin Normal University·Natural Science Edition(天津师范大学学报·自然科学版), 2012, 32(2): 88. [4] HU Xiao-geng, GAO Yong-hong(胡小耕, 高永宏). Gansu Geology(甘肃地质), 2011, 20(3): 89. [5] LI Hui-ying, LI Xin-xin(李卉颖, 李昕馨). Journal of Shenyang University·Natural Science(沈阳大学学报·自然科学版), 2014, 26(1): 38. [6] LOU Tao, Lü Li, TAN Ya-ling, et al(娄 涛, 吕 鹂, 谭亚翎, 等). Instrumentation Analysis Monitoring(仪器仪表与分析监测), 2006, (2): 37. [7] FU Ai-rui, CHEN Qing-zhi, LUO Zhi-ding, et al(付爱瑞, 陈庆芝, 罗治定, 等). Rock and Mineral Analysis(岩矿测试), 2011, 30(6): 751. [8] TANG Jiao-rong, LU Jian-ping, TONG Zhang-fa(唐姣荣, 陆建平, 童张法). Environmental Science & Technology(环境科学与技术), 2010, 33(5):126. [9] HUANG Yan-min, WEI Hai-ping, ZHANG Yuan-mao(黄嫣旻, 魏海萍, 张元茂). Environmental Science & Technology(环境科学与技术), 2009, 32(1): 130. [10] YU Ling-da, WANG Guang-fu, ZHU Guang-hua, et al(于令达, 王广甫, 朱光华, 等). Acta Scientiae Circumstantiae(环境科学学报), 2010, 30(1): 204. [11] ZHAO Ya-fang, LI Xiao, WANG Min, et al(赵亚芳, 李 晓, 王 敏, 等). Sichuan Environment(四川环境), 2012, 31(S1): 5. [12] TANG Chi, YE Zhi-xiang, LI Zai-bo, et al(汤 驰, 叶芝祥, 李再波, 等). Journal of Environment and Health(环境与健康杂志), 2012, 29(1): 77. [13] HUANG Yan-chu, WANG Qing-guang(黄衍初, 王庆广). Chinese Journal of Environmental Engineering(环境科学丛刊), 1983, (1): 38. [14] TANG Xin-ying, LUO Lei, CAO Jun-ji, et al(唐信英, 罗 磊, 曹军骥, 等). Environmental Science & Technology(环境科学与技术), 2013, 36(5): 151.
|
[1] |
ZHOU Zi-hao1, YANG Fan2, 3, LI Dong1, WANG Jian-ping2, 3, XU Jian-hua1*. pH Dependent Time-Resolved Fluorescence Spectra of ZnSe Quantum Dots Based on Glutathione Ligands[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3178-3183. |
[2] |
YANG Chang-hu, YUAN Jian-hui. Effects of Thickness on Spectral Properties of Undoped ZnO Thin Films[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2835-2838. |
[3] |
WANG Shi-xia, HU Tian-yi, YANG Meng. Study on Preparation of Ag-Doped ZnO Nanomaterials and Phase Transition at High Pressure Using Diamond Anvil Cell and Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 484-488. |
[4] |
JIAO Dian, XIAO Si-guo*. Luminescence and Long Afterglow Properties of In3+ and Si4+ Co-Doped ZnBi0.02Ga1.98O4∶Cr3+[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3716-3721. |
[5] |
ZHANG Chao, ZHU Lin, GUO Jin-jia*, LI Nan, TIAN Ye, ZHENG Rong-er. Laser-Induced Breakdown Spectroscopy for Heavy Metal Analysis of Zn of Ocean Sediments[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3617-3622. |
[6] |
Sattam Al-Otaibi*. Eco-Friendly Fabrication of Selenium Nanoparticles by Solidstate Thermal Decomposition of SeCl4-L-Glutamine Precursor: Spectroscopic Characterizations[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3644-3648. |
[7] |
YUAN Xiao-xue, ZHOU Ding-you, LI Jie*, XU Xian-shun, YONG Li, HU Bin, LIU Tao*. Progress in the Analysis of Elements in PM2.5 by ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2373-2381. |
[8] |
ZHAO Qian-qian1, YAN Lai-lai1,2, XIE Qing1,2, LIU Ya-qiong1,2, YANG Si-yu1, GUO Chen1, WANG Jing-yu1,2*. Effect of Zinc on the Growth and Element Content of Lactobacillus Acidophilus[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1489-1494. |
[9] |
CHEN Shuo-ran, HUANG Su-qin, HAN Peng-ju*, YE Chang-qing, SONG Sa-sa, WANG Xiao-mei*. Preparation of 9,10-Diphenylanthracene Derivative and Its Detection for Cu2+ by Up/Down-Conversion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(12): 3769-3775. |
[10] |
Rubarani. P. Gangadharan1*, S. Sampath Krishnan2, M. Thirumalaikumar3. Quantum Chemical and Corrosion Inhibition Studies of (4-Chlorophenyl)-N-(4-Methylphenyl) Nitrone[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(12): 3940-3945. |
[11] |
ZHANG Hao1, 2, XU Yuan-di1, LIU Xiu-yu1. Study on Preparation Mechanism of Ce-Cu/TiO2 Hollow Microspheres with Uniform Particle Size Distribution Based on Fourier Transform Infrared Spectrum and X-Ray Diffraction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(08): 2360-2365. |
[12] |
QIAO Jin, XU Chang-shan*, ZHANG Hai-jiao, SHAO Hai-ling, ZHENG Bo-wen, HE Hui-min. Effects of ZnO NPs on the Photosynthetic Processes of Egeria najas[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(05): 1495-1502. |
[13] |
LIU Zhe1, LIU Liu2, YANG Yi-bing3, LI Xin4, SHI Jian-ping5, WANG Qin1*, XU Dong-qun1*. Characteristics and Sources Analysis of Element in Ambient PM2.5 in Taiyuan City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(05): 1593-1598. |
[14] |
CHEN Xin-xin1, 3, 4, LIU Zi-yi1, 3, 4, Lü Mei-qiao2*, ZHANG Chu1, 3, 4, YAO Jie-ni1, 2, HE Yong1, 3, 4*. Diagnosis and Monitoring of Sclerotinia Stem Rot of Oilseed Rape Using Thermal Infrared Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(03): 730-737. |
[15] |
LINGYUN Xia-fei1, 2, GAO Chao1, 2, FAN Jing-shuang1, 2, Lü Hai-xia1, 2*, YU Yan1, 2. Synthesis of Hyperbranched Polyamidoamine (PAMAM) Grafted Chitosan and Its Adsorption for Heavy Metal and Dyes Studied with Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(11): 3583-3587. |
|
|
|
|