光谱学与光谱分析 |
|
|
|
|
|
Direct Determination of Heavy Metal Elements in Propolis by Inductively Coupled Plasma Mass Spectrometry |
ZHANG Ping1, FU Liang2, XIE Hua-lin2* |
1. College of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China 2. College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China |
|
|
Abstract In current study, a method was established for simultaneous quantitative analysis of Cr, Ni, As, Cd, Sb, Sn, Hg and Pb in propolis by using inductively coupled plasma mass spectrometry. Before analyzed by ICP-MS, the propolis was diluted with n-propanol/xylene(70∶30, φ). Organic sample can remain stable by diluting with n-propanol/xylene, result from long-time sample dispersion in the solution. Carbon accumulation on the sampling cone, which comes from the high carbon content of butter, will clog the orifice and decrease analysis sensitivity. Thus a small amount of oxygen was added into the argon gas line to eliminate carbon. ORS was used to eliminate the polyatomic interferences caused by the high salty matrixes. The effects of the He collision gas flow rate on estimating detection limits of Cr, Ni and As were investigated. The matrix effects and the instrument drift have been calibrated with Rh as internal standard element. The results show that the detection limits is in the range of 20.8~102.7 ng·L-1, the recovery is in the range of 92.0%~109.0%, and the RSD is less than 3.5%. This method was simple, sensitive and precise to simultaneously analyze 8 heavy metal elements in propolis.
|
Received: 2013-10-07
Accepted: 2014-05-08
|
|
Corresponding Authors:
XIE Hua-lin
E-mail: zphy2008@163.com
|
|
[1] ZHANG Fan, HE Xue-feng, WANG Xue-kai(张 帆, 贺学锋, 汪学楷). Science and Technology of Food Industry(食品工业科技), 2000, 21(3): 67. [2] Murillo M, Benzo M, Marcano E, et al. Journal of Analytical Atomic Spectrometry, 1999, 14(5): 815. [3] Aucelio R Q, Curtius A J. Analyst, 2000, 125(9): 1673. [4] WANG Yan, ZHU Mei(王 燕, 朱 梅). Science and Technology of Food Industry(食品工业科技), 2006, 27(8): 164 [5] XU Xiao-na, LI Ya, YANG Rui-hua, et al(徐孝娜, 李 娅, 杨瑞华, 等). Progress in Modern Biomedicine (现代生物医药进展), 2011, 11(11): 2058. [6] Sales A, Alvarez A, Areal M R, et al. Journal of Hazardous Materials, 2006, 137(3): 1352. [7] Gong S, Luo L, Gong W, et al. Food Chemistry, 2012, 134 (1): 583. [8] Korn M G A, Guida M A B, Barbosa J T P, et al. Food Analytical Methods, 2013, 6(3): 872. [9] LIU Hong-wei, ZHANG Ping, HU Han-xiang(刘宏伟, 张 萍, 胡汉祥). Chinese Journal of Analytical Chemistry(分析化学), 2014, 42(6): 913. [10] Nie Xidu, Ling Yizeng, Tang Yougen, et al. Journal of Central South University, 2012, 19(9): 2416. [11] Craddock P R, Rouxel O J, Ball L A, et al. Chemical Geology, 2008, 253(3-4): 102. [12] Yenisoy-Karakas S, Gaga E O, Cankur O, et al. Talanta, 2009, 79(5): 1298. [13] Simpson L, Hearn R, Merson S, et al. Talanta, 2005, 65(4): 900. [14] Tanner S D, Baranov V I, Bandura D R. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57(9): 1361. |
[1] |
ZHENG Pei-chao, LIU Ran-ning, WANG Jin-mei, FENG Chu-hui, HE Yu-tong, WU Mei-ni, HE Yu-xin. Solution Cathode Glow Discharge-Atomic Emission Spectroscopy Coupled With Hydride Generation for Detecting Trace Mercury and Tin in Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1139-1143. |
[2] |
MENG Ru2,4, DU Jin-hua1,2*, LIU Yun-hua1,2, LUO Lin-tao1,3, HE Ke1,2, LIU Min-wu1,2, LIU Bo1,3. Exploration of Digestion Method for Determination of Heavy Metal Elements in Soil by ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2122-2128. |
[3] |
ZHANG Fei1,HUA Xia2,YOU Fan1,WANG Bin3,MAO Li3*. Determination of Thallium and Its Compounds in Workplace Air by Ultrasonic Extraction-Inductively Coupled Plasma Mass Spectrometry Using No Gas Mode[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2279-2283. |
[4] |
ZHAO Ting1,2,3, CHI Hai-tao1,2,3*, LIU Yi-ren1,2,3, GAO Xia1,2,3, HUANG Zhao1,2,3, ZHANG Mei1,2,3, LI Qin-mei1,2,3. Determination of Elements in Health Food by X-Ray Fluorescence Microanalysis Combined With Inductively Coupled Plasma Mass Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 750-754. |
[5] |
ZHANG Chao, ZHU Lin, GUO Jin-jia*, LI Nan, TIAN Ye, ZHENG Rong-er. Laser-Induced Breakdown Spectroscopy for Heavy Metal Analysis of Zn of Ocean Sediments[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3617-3622. |
[6] |
ZHOU An-li1, JIANG Jin-hua1, SUN Chun-xiao2, XU Xin-zhong2, LÜ Xin-ming1,2*. Identification of Different Origins of Hetian Jade Based on Statistical Methods of Multi-Element Content[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3174-3178. |
[7] |
YANG Lu-wei1, LI Ming2*, GAO Wen-feng2, LIU Gang1, WANG Yun-feng2, WANG Wei1, LI Kun1. Determination of Heavy Metal Elements in Stagnation Water of Flat-Plate Solar Collectors With ICP-OES[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(06): 1947-1952. |
[8] |
LIANG Piao-piao1, WANG Yi-run1, WANG Ru-ming1, FAN Li-yun1, CHEN Tian-tian1, BAI Ya-hong1, YU Qian-ru1, ZHOU Shan-shan1, LIU Ying1,2*. Level and Risk Assessment of Arsenic in Muti-Media near Mining Area in Yunnan by Using Inductively Coupled Plasma Mass Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(03): 990-996. |
[9] |
LIANG Piao-piao1, XING Yun-xin1, WEI Chun-li1, LI Yuan-yuan1, LIU Yi-ming1, HU Yu1, LIU Ying1,2*. Distribution and Assessment of Heavy Metals in the Overlying Water-Sediment-Plant-Fish System in the Wuliangsuhai Lake by Using Inductively Coupled Plasma Mass Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(02): 652-658. |
[10] |
LIU Bing-bing, LIU Jia, ZHANG Chen-ling, HAN Mei, JIA Na, LIU Sheng-hua*. Preconcentration and Determination of Heavy Metals in Water Samples by Ion Exchange Resin Solid Phase Extraction with Inductively Coupled Plasma Atomic Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(12): 3917-3922. |
[11] |
ZHANG Li-jiao1,2, LAI Wan-chang1, XIE Bo2, 3, HUANG Jin-chu1, LI Dan1, WANG Guang-xi1, YANG Qiang1, CHEN Xiao-li1. The Effect of Filterson on the Determination of Trace Heavy Metal Cd in Light Matrix by Energy Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1917-1921. |
[12] |
YANG Juan1, 2, CHEN Lan-zhen1, 2*, XUE Xiao-feng1, 2, WU Li-ming1, 2, LI Yi1, 2, ZHAO Jing3, WU Zhao-bin1, 2, ZHANG Yan-nan2. A Feasibility Study on the Discrimination of the Propolis Varieties Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(06): 1717-1720. |
[13] |
WU Xiu-li1, ZHAO Zhi-zhong2, WU Dan2, CHEN Guang-ying3, LIU Hong1, HE Meng-xiong1, DING Guo-hua1, HE Wen-ying1*. Determination of Main Active Components and Metal Elements of Hainan Alpinia Katsumadai by Spectral Analysis [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(04): 1191-1196. |
[14] |
GAO Rui-feng1, 2, GAO Meng-chao3, LING Rui3, ZHANG Ning1* . Improving Analytical Methods by Uncertainty Evaluation with the Case of Determination of Aluminum in Starch Products by ICP-MS [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(04): 1211-1216. |
[15] |
WANG Xiao-wei1, LIU Jing-fu2, GUAN Hong3, WANG Xiao-yan1, SHAO Bing1*, ZHANG Jing1, LIU Li-ping1, ZHANG Ni-na1. Determination of Total Sulfur Dioxide in Chinese Herbal Medicines via Triple Quadrupole Inductively Coupled Plasma Mass Spectrometry [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(02): 527-531. |
|
|
|
|