光谱学与光谱分析 |
|
|
|
|
|
Monitoring the Redox States of Thioredoxin in Protein-Protein Interaction Using Intrinsic Fluorescence Probe |
WANG Pan1, GUO Ai-yu1, CHANG Guan-xiao2, RAN Xia1, ZHANG Yu2*, GUO Li-jun1* |
1. School of Physics and Electronics, Henan University, Kaifeng 475004, China2. State Key Laboratory of Plant Stress, Henan University, Kaifeng 475004, China |
|
|
Abstract The cellular redox states directly affect cell proliferation, differentiation and apoptosis, and the redox states changes is particularly important to the regulation of cell survival or death. Thioredoxin is a kind of oxidation regulatory protein which is widely exists in organisms, and the change of redox states is also an important process in redox regulation. In this work, we have used the site-directed mutagenesis of protein, SDS-polyacrylamide gel electrophoresis fluorescence spectroscopy and circular dichroism etc., to investigate redox states changes between TRX (E. coli) and glutathione peroxidase(GPX3) during their interaction. By observing the fluorescence spectra of TRX and its mutants, we have studied the protein interactions as well as the redox states switching between oxidation state TRX and the reduced state GPX3. The results demonstrate the presence of interactions and electron exchanges occurring between reduced GPX3 and oxidized TRX, which is of significance for revealing the physical and chemical mechanism of TRX in intracellular signal transduction.
|
Received: 2014-06-25
Accepted: 2014-11-16
|
|
Corresponding Authors:
ZHANG Yu, GUO Li-jun
E-mail: juneguo@henu.edu.cn;qikeli@hotmail.com
|
|
[1] Holmgren A. Structure, 1995, 3(3): 239. [2] Wollman E E, d’Auriol L, Rimsky L, et al. Journal of Biological Chemistry, 1988, 263(30): 15506. [3] Arnér E S J, Holmgren A. European Journal of Biochemistry, 2000, 267(20): 6102. [4] Koh C S, Didierjean C, Navrot N, et al. Journal of Molecular Biology, 2007, 370(3): 512. [5] Holmgren A. Structure, 1995, 3(3): 239. [6] Landino L M, Moynihan K L, Todd J V, et al. Biochem Bioph RES CO, 2004, 314(2): 555. [7] Messens J, Collet J F. The International Journal of Biochemistry & Cell Biology, 2006, 38(7): 1050. [8] Benhar M, Forrester M T, Hess D T, et al. Science, 2008, 320(5879): 1050. [9] Barabote R D, Saier M H. Microbiology and Molecular Biology Reviews, 2005, 69(4): 608. [10] Callister M E, Burke-Gaffney A, Evans T W, et al. Thorax, 2006, 61(6): 521. [11] Li H, Hanson C, Fuchs J A, et al. Biochemistry, 1993, 32(22): 5800. [12] Dorcak V, Palecek E. Analytical Chemistry, 2009, 81(4): 1543. [13] Kumagai Y, Shinkai Y, Miura T, et al. Annual. Review of Pharmacology and Toxicology, 2012, 52: 221. [14] Watanabe R, Nakamura H, Masutani H, et al. Pharmacol Ther., 2010, 127(3): 261. [15] Maeda K, Hgglund P, Bjrnberg O, et al. FEBS Letters, 2010, 584(15): 3376. [16] Kho C W, Lee P Y, Bae K H, et al. Biochem. Bioph. RES CO, 2006, 348(1): 25. [17] Ma L H, Takanishi C L, Wood M J. Journal of Biological Chemistry, 2007, 282(43): 31429. [18] Hixon J, Reshetnyak Y K. Algorithms, 2009, 2(3): 1155. [19] Kyrychenko A, Posokhov Y O, Rodnin M V, et al. Biochemistry, 2009, 48(32): 7584. [20] Vivian J T, Callis P R. Biophysical Journal, 2001, 80(5): 2093. [21] Moon C P, Fleming K G. SProceedings of the National Academy of Sciences, 2011, 108(25): 10174. [22] Hixon J, Reshetnyak Y K. Algorithms, 2009, 2(3): 1155. [23] Gallego O, Betts M J, Gvozdenovic-Jeremic J, et al. Molecular Systems Biology, 2010, 6(1). [24] Ladokhin A S, Jayasinghe S, White S H. Analytical Bbiochemistry, 2000, 285(2): 235. |
[1] |
TAN Ai-ling1, WANG Si-yuan1, ZHAO Yong2, ZHOU Kun-peng1, LU Zhang-jian1. Research on Vinegar Brand Traceability Based on Three-Dimensional Fluorescence Spectra and Quaternion Principal Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2163-2169. |
[2] |
ZHOU Meng-ran1, LAI Wen-hao1*, WANG Ya1, 2, HU Feng1, LI Da-tong1, WANG Rui1. Application of CNN in LIF Fluorescence Spectrum Image Recognition of Mine Water Inrush[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2262-2266. |
[3] |
CHEN Ji-wen1, XU Tao2, LIU Wei2, FANG Zhe1, QU Hua-yang1*, LIANG Yuan1, HU Xue-qiang1, LIU Ming-bo1. On-Line Determination of Light-Rare Earth Distribution by Energy Dispersive-X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2284-2289. |
[4] |
LIU Ling1, YANG Ming-xing1, 2*, LU Ren1, Andy Shen1, HE Chong2. Study on EDXRF Method of Turquoise Composition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1910-1916. |
[5] |
ZHANG Li-jiao1,2, LAI Wan-chang1, XIE Bo2, 3, HUANG Jin-chu1, LI Dan1, WANG Guang-xi1, YANG Qiang1, CHEN Xiao-li1. The Effect of Filterson on the Determination of Trace Heavy Metal Cd in Light Matrix by Energy Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1917-1921. |
[6] |
TANG Zhu-rui1, 2, XI Bei-dou1, 3, 4, HE Xiao-song1, 3, TAN Wen-bing1, 3, ZHANG Hui1, 3, LI Dan1, 3, HUANG Cai-hong1, 3*. Structural Characteristics of Dissolved Organic Compounds during Swine Manure Composting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1526-1532. |
[7] |
ZHOU Meng-ran, HU Feng*, YAN Peng-cheng, LIU Dong. Laser Induced Fluorescence Spectrum Analysis of Water Inrush in Coal Mine Based on FCM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1572-1576. |
[8] |
WANG Shi-fang, LUO Na, HAN Ping*. Application of Energy-Dispersive X-Ray Fluorescence Spectrometry to the Determination of As, Zn,Pb and Cr in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1648-1654. |
[9] |
ZHANG Qiu-hui1, GUO Zhuang-zhi1, FENG Guo-ying2. The Effect of Incident Laser Power on Raman Spectra and Photoluminescence Spectra of Silicon Nanowires[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1118-1121. |
[10] |
LI Shuang-fang1,2, GUO Yu-bao1*, SUN Yan-hui2, GU Hai-yang2. Rapid Identification of Sunflower Seed Oil Quality by Three-Dimensional Synchronous Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1165-1170. |
[11] |
ZHU Cong-hai1, 3, CHEN Guo-qing1, 3*, ZHU Chun1, 2, 3, ZHAO Jin-chen1, 3, LIU Huai-bo1, 3, ZHANG Xiao-he1, 3, SONG Xin-shu1, 3. Studies of the Fluorescence Properties of Methanol and Ethanol Based on the Density Functional Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1133-1138. |
[12] |
OUYANG Heng1,2*, XIAO Jian-ren3, LIN Xiu-yong4, FAN Gong-duan4*. Compositional Characteristics of Dissolved Organic Matter in Water Treatment Systems of Water Source Heat Pump Based on Three-Dimensional Fluorescence Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1146-1152. |
[13] |
WANG Yu-tian, LIU Ting-ting*, LIU Ling-fei, YANG Zhe, CUI Yao-yao. Determination of Polycyclic Aromatic Hydrocarbons in Water Based on Three Dimensional Fluorescence Spectroscopy Combined with Wavelet Compression and APTLD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1171-1177. |
[14] |
TANG Dong-lin1, WANG Qiao1, CHU Yi-neng2, LI Rui-hai2. Detecting H2S Gas Concentration by 1,8-Naphthalimides Fluorescent Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1319-1323. |
[15] |
WANG Xiang1, 2, 3, ZHAO Nan-jing1, 3*, YU Zhi-min2, MENG De-shuo1, 3, XIAO Xue1, 3, ZUO Zhao-lu1, 3,. Detection Method Progress and Development Trend of Organic Pollutants in Soil Using Laser-Induced Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 857-863. |
|
|
|
|