光谱学与光谱分析 |
|
|
|
|
|
ICP-AES Determination of Mineral Content in Boletus Tomentipes Collected from Different Sites of China |
WANG Xue-mei1, ZHANG Ji2, LI Tao3, LI Jie-qing1, WANG Yuan-zhong2*, LIU Hong-gao1* |
1. College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China 2. Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China3. College of Resources and Environment, Yuxi Normal University, Yuxi 653100, China |
|
|
Abstract P, Na, Ca, Cu, Fe, Mg, Zn, As, Cd, Co, Cr and Ni contents have been examined in caps and stipes of Boletus tomentipes collected from different sites of Yunnan province, southwest China. The elements were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) with microwave digestion. P, Ca, Mg, Fe, Zn and Cu were the most abundant amongst elements determined in Boletus tomentipes. The caps were richer in P, Mg, Zn and Cd, and the stipes in Ca, Co and Ni. Cluster analysis showed a difference between Puer (BT7 and BT8) and other places. The PCA explained about 77% of the total variance, and the minerals differentiating these places were P (PC1) together with Ca, Cu, Fe, Mg, As and Ni, Na (PC2) together with Cd, and Zn (PC3). The results of this study imply that element concentrations of a mushroom are mutative when collected from the different bedrock soil geochemistry.
|
Received: 2014-07-13
Accepted: 2014-10-19
|
|
Corresponding Authors:
WANG Yuan-zhong, LIU Hong-gao
E-mail: boletus@126.com;honggaoliu@126.com
|
|
[1] Vamanu E, Nita S. BioMed Research International,2013, 2013: 1. [2] Jaworska G, Bernas E. International Journal of Food Properties,2013, 16: 139. [3] Pereira E, Barros L, Martins A, et al. Food Chemistry, 2012, 130: 394. [4] Wang X M, Zhang J, Wu L H, et al. Food Chemistry, 2014, 151: 279. [5] Kalac P. Journal of the Science of Food and Agriculture,2013, 93: 209. [6] Wu S R, Luo X L, Liu B, et al. Food Science and Technology,2010, 35: 100. [7] iák L. Mykologick Sborník,2007, 84: 78. [8] Song B S. Journal of Southwest Forestry College 2002, 22: 33. [9] Zhang D, Frankowska A, Jarzyńska G, et al. African Journal of Agricultural Research,2010, 5: 3050. [10] Falandysz J, Borovika J. Applied Microbiology and Biotechnology,2013, 97: 477. [11] Szubstarska J, Jarzyńska G, Falandysz J. et al. Chemical Papers,2012, 66: 1026. [12] Falandysz J, Kunito T, Kubota R, et al. Journal of Environmental Sciences and Health Part A,2007, 42: 2081. [13] Jarzyńska G, Falandysz J. et al. Journal of Environmental Sciences and Health, Part A,2011, 46: 569. [14] Falandysz J, Kunito T, Kubota R, et al. Journal of Environmental Sciences and Health Part B, 2008, 43: 187. [15] Kala P. Food Chemistry,2009,113:9. [16] Chen X H, Zhou H B, Qiu G Z. Bulletin of Environmental Contamination and Toxicology,2009, 83: 280. [17] Huang C Y, Chen Q, Zhao Y C, et al. Scientia Agricultura Sinica, 2010, 43: 1207. [18] Kala P. Food Chemistry,2010,122: 2. [19] Semreen M H, Aboul-Enein H Y. Analytical Letters,2011, 44: 932. [20] Falandysz J, Kunito T, Kubota R, et al. Journal of Environmental Sciences and Health Part A,2008, 43: 1692. [21] Falandysz J, Jarzyńska G, Drewnowska M, et al. Journal of Mountain Science,2012, 9: 697. [22] Aloupi M, Koutrotsios G, Koulousaris M, et al. Ecotoxicology and Environmental Safety,2012, 78: 184. [23] Zhu F K, Qu L, Fan W X, et al. Environmental Monitoring and Assessment,2011, 179: 191. [24] Falandysz J, Frankowska A, Jarzyńska G, et al. Journal of Environmental Science and Health, Part B,2011, 46: 231. [25] Tai L M, Zhao C Y, Guo X, et al. Edible Fungi of China, 2013, 32: 4. [26] Li T, Wang Y Z, Li R C. Acta Edulis Fungi,2008, 15: 70. [27] Li T, Wang Y Z, Zhang J, et al. Food Chemistry,2011, 127: 1828. [28] Okoro I O, Achuba F I. African Journal of Biotechnology,2012, 11: 7720. [29] Gencelep H, Uzun Y, Tun?türk Y, et al. Food Chemistry, 2009, 113: 1033. [30] Ayaz F A, Torun H, Colak A, et al. Food and Nutrition Sciences, 2011, 2: 53. [31] Chudzyński K, Falandysz J. Chemosphere,2008, 73: 1230. |
[1] |
LIU Jin, LUAN Xiao-li*, LIU Fei. Near Infrared Spectroscopic Modelling of Sodium Content in Oil Sands Based on Lasso Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2274-2278. |
[2] |
CAI Shi-shi1,ZHANG En1, 2*. Trace Elements and U-Pb Ages of Zircons from Myanmar Jadeite-Jade by LA-ICP-MS: Constraints for Its Genesis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1896-1903. |
[3] |
ZHANG Li-jiao1,2, LAI Wan-chang1, XIE Bo2, 3, HUANG Jin-chu1, LI Dan1, WANG Guang-xi1, YANG Qiang1, CHEN Xiao-li1. The Effect of Filterson on the Determination of Trace Heavy Metal Cd in Light Matrix by Energy Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1917-1921. |
[4] |
JIA Hao-yue1, LI Chuang-liang1*, YIN Xu-mei1, ZHOU Rui1, QIU Xuan-bing1, YANG Wen1, LI Kun1, WANG Gao2*, WEI Ji-lin1. Trace Titanium in Ferroalloy Studied by the Laser Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1552-1557. |
[5] |
ZHOU Xiu-qi, LI Run-hua, DONG Bo, HE Xiao-yong, CHEN Yu-qi*. Analysis of Aluminum Alloy by High Repetition Rate Laser Ablation Spark-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1577-1581. |
[6] |
HUI Cen-yi, FENG Jin-chao, SHI Sha*. Study on the Determination of Mineral Elements in Three Caragana Fabr. Species in Inner Mongolia by Inductively Coupled Plasma Mass Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1240-1244. |
[7] |
YUAN Jing, SHEN Jia-lin*, LIU Jian-kun, ZHENG Rong-hua. Determination of Rare Earth Elements in Geological Samples by High-Energy Polarized Energy-Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 582-589. |
[8] |
JIANG Bo1, 3, HUANG Jian-hua2*, LIU Wei2. Multi-Element Analysis of Wild Chinese Honeylocust Fruit by Inductively Coupled Plasma Tandem Mass Spectrometry (ICP-MS/MS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3859-3864. |
[9] |
XING Li-feng1,2, CHANG Liang1,2. Lithium Abundance of 17 Young Nearby Stars: High Resolution Spectrograph Observation with Lijiang 1.8 m Telescope[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3900-3903. |
[10] |
ZHENG Pei-chao, ZHAI Xiang, WANG Jin-mei*, YANG Rui. Analysis of Solution Cathode Glow Discharge Atomic Emission Spectroscopy by the Multiple Linear Regression Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3209-3213. |
[11] |
XIU Jun-shan1, LIU Yun-yan1, DONG Li-li2,QIN Hua1. The Detection of Trace Wear Elements in Engine Oil Using Indirect Ablation-Laser Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2885-2890. |
[12] |
WANG Jin-lei1, 2, QIAN Jun-min2, LI Bo1, LUO Lin1*, SUN Bao-lian1, XU Wei-jun2, CUI Ning2. Chloroformylation-Separation of Matrix and Determination of Trace Impurities in High Purity Chromium by ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2896-2899. |
[13] |
Lü Yi-zhong1, CONG Wei-wei1,2*, LI Li-jun1*. Structural Changes in Humic Acid during Degeneration Process of a Steppe Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2954-2960. |
[14] |
YANG Chang-bao1, LIU Na1*, ZHOU Zhen-chao1, LI Shang-nan1,2, ZHANG Chen-xi3, SONG Jiang-tao1. Research on the Relationship between Main Rock Metal Elements Content,Physical Parameters and Spectral Features in Tahe Area[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(08): 2569-2574. |
[15] |
YANG Hui1, 2, WANG Cai-hong1, 2, LIU Mu-hua1, 2, CHEN Tian-bing1, 2, HUANG Lin2, 3, YAO Ming-yin1, 2*. Improvement of LIBS Accuracy in Detecting Pb in Pork by Physical Pretreatment of Samples[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(08): 2580-2584. |
|
|
|
|