光谱学与光谱分析 |
|
|
|
|
|
Quantum Chemistry Calculation of Ponceau 4R Molecule Structure and Research on the Fluorescence Mechanism |
ZHU Chun1,2, ZHANG Yong1, WU Jian-chun3, ZHU Tuo4, CHEN Guo-qing1* |
1. School of Science, Jiangnan University, Wuxi 214122, China2. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China3. Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology,Sichuan University, Chengdu 610064, China4. College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China |
|
|
Abstract The molecule structures of Ponceau 4R in ground state and the excited state wereoptimized by employing the Gaussian 09W program package. In addition, the electronic structure and frontier orbital of the ground state, the emission wavelength of the excited state was also investigated. And then, the Edinburgh FLS920P fluorescence spectrometer was applied to the measurement of the fluorescence spectra of cochineal solution, and the emission spectra was obtained. The calculated emission wavelength had a good coincidence with the experiment data, which indicates that the optimized structures mentioned above are reasonable. The structures comparison between the ground state and the excited state was also performed to analyze the mechanism of fluorescence spectrum. It can be concluded that the molecule structure of excited state is nearly planar, so Ponceau 4R is thought to have strong fluorescent characteristics, the emission fluorescence is the result of transition from orbit 139 to orbit 137.
|
Received: 2014-02-25
Accepted: 2014-06-21
|
|
Corresponding Authors:
CHEN Guo-qing
E-mail: cgq2098@163.com
|
|
[1] YANG Pin(杨 频). Molecular Structure Parameter and Correlation Rules(分子结构参量及其与物性关联规律). Beijing: Science Press(北京:科学出版社), 2007. 49. [2] Tsuda S, Murakami M, Matsusaka N, et al. Toxicol. Sci., 2001, 61(1): 92. [3] Chung K T, Cerniglia C E. Murat. Res., 1992,277(3): 201. [4] King C M, Land S J, Jones R F, et al. Mutat. Res., 1997, 376(1-2): 123. [5] ZHANG Qiao(张 桥). Toxicology Foundation(毒理学基础). Beijing: People’s Medical Publishing House(北京:人民医学出版社),2004. 60. [6] DU Jian-zhong, PANG Hui-dan, WU Su-qin, et al(杜建中,庞惠丹,巫素琴,等). Food Science(食品科学), 2008, 29(3): 441. [7] ZONG Wan-li, LIU Xin-cai(宗万里,刘新才). Journal of Food Science and Technology(食品科学技术学报), 2013, 31(2): 58. [8] SHI Ai-min, ZHU Tuo, GU En-dong, et al(史爱敏,朱 拓,顾恩东,等). Acta Optica Sinica(光学学报), 2008, 28(11): 2237. [9] CHENG Guo-qing(陈国庆). Studies on Application of Fluorescence Spectroscopy in Food Safety Supervision(荧光光谱技术在食品安全监控中的应用研究). Wuxi: Jiangnan University(无锡:江南大学), 2010. [10] HAN Bing, DENG Feng, CHU Yue-ying, et al(韩 冰,邓 风,褚月英,等). Acta Phys. -Chim. Sin.(物理化学学报), 2012, 28(2): 315. [11] YANG Zhao-di, SUN Miao, YUAN Dan-dan(杨照地,孙 苗,苑丹丹). Quantum Chemical Basis(量子化学基础). Beijing: Chemical Industry Press(北京:化学工业出版社), 2012. 171. [12] Parr R G, Yang W. Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989. 47. [13] Salahub D R, Zerner M C. The Challenge of d and f Electrons. ACS: Washington D. C, 1989. [14] Sundholm D. Phys. Chem. Chem. Phys., 2003, 5: 4265. [15] Hehre W J, Radon L, Pople J. A. Ab Initio Molecular Orbital Theory. New York: John Wiley & Sons, 1986: 226. [16] Cossi M, Barone V, Cammi R, et al. Chem. Phys. Lett., 1996, 255(4-6): 327. [17] Sundholm D. Chem. Phys. Lett., 2000, 317: 392. [18] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09 Revision B.01, Wallingford CT: Gaussian Inc., 2010. [19] Gordon M S, Binkley J S, Pople J A, et al. J. Am. Chem. Soc., 1982,104: 2797. [20] LIAO Xian-wei, SU Yu(廖显威,苏 宇). Chinese Journal of Chemical Physics(化学物理学报), 2000, 13(3): 299. |
[1] |
NIE Mei-tong1,2, XU De-gang1,2*, WANG Yu-ye1,2*, TANG Long-huang1,2, HE Yi-xin1,2, LIU Hong-xiang1,2, YAO Jian-quan1,2. Investigation on Characteristics of Edible Oil Spectra with Terahertz Time-Domain Attenuated Total Reflection Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2016-2020. |
[2] |
TAN Ai-ling1, WANG Si-yuan1, ZHAO Yong2, ZHOU Kun-peng1, LU Zhang-jian1. Research on Vinegar Brand Traceability Based on Three-Dimensional Fluorescence Spectra and Quaternion Principal Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2163-2169. |
[3] |
ZHOU Meng-ran1, LAI Wen-hao1*, WANG Ya1, 2, HU Feng1, LI Da-tong1, WANG Rui1. Application of CNN in LIF Fluorescence Spectrum Image Recognition of Mine Water Inrush[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2262-2266. |
[4] |
CHEN Ji-wen1, XU Tao2, LIU Wei2, FANG Zhe1, QU Hua-yang1*, LIANG Yuan1, HU Xue-qiang1, LIU Ming-bo1. On-Line Determination of Light-Rare Earth Distribution by Energy Dispersive-X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2284-2289. |
[5] |
WU Jun, YOU Jing-lin*, WANG Yuan-yuan, WANG Jian, WANG Min, Lü Xiu-mei. Raman Spectroscopic Study of Li2B4O7 Crystal and Melt Structure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1736-1740. |
[6] |
PENG Heng, LIU Shuai, CHEN Xiang-bai*. Raman Study of Perovskite (C6H5CH2NH3)2PbBr4[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1763-1765. |
[7] |
LIU Ling1, YANG Ming-xing1, 2*, LU Ren1, Andy Shen1, HE Chong2. Study on EDXRF Method of Turquoise Composition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1910-1916. |
[8] |
ZHANG Li-jiao1,2, LAI Wan-chang1, XIE Bo2, 3, HUANG Jin-chu1, LI Dan1, WANG Guang-xi1, YANG Qiang1, CHEN Xiao-li1. The Effect of Filterson on the Determination of Trace Heavy Metal Cd in Light Matrix by Energy Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1917-1921. |
[9] |
TANG Zhu-rui1, 2, XI Bei-dou1, 3, 4, HE Xiao-song1, 3, TAN Wen-bing1, 3, ZHANG Hui1, 3, LI Dan1, 3, HUANG Cai-hong1, 3*. Structural Characteristics of Dissolved Organic Compounds during Swine Manure Composting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1526-1532. |
[10] |
ZHOU Meng-ran, HU Feng*, YAN Peng-cheng, LIU Dong. Laser Induced Fluorescence Spectrum Analysis of Water Inrush in Coal Mine Based on FCM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1572-1576. |
[11] |
WANG Shi-fang, LUO Na, HAN Ping*. Application of Energy-Dispersive X-Ray Fluorescence Spectrometry to the Determination of As, Zn,Pb and Cr in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1648-1654. |
[12] |
ZHANG Qiu-hui1, GUO Zhuang-zhi1, FENG Guo-ying2. The Effect of Incident Laser Power on Raman Spectra and Photoluminescence Spectra of Silicon Nanowires[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1118-1121. |
[13] |
LI Shuang-fang1,2, GUO Yu-bao1*, SUN Yan-hui2, GU Hai-yang2. Rapid Identification of Sunflower Seed Oil Quality by Three-Dimensional Synchronous Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1165-1170. |
[14] |
ZHU Cong-hai1, 3, CHEN Guo-qing1, 3*, ZHU Chun1, 2, 3, ZHAO Jin-chen1, 3, LIU Huai-bo1, 3, ZHANG Xiao-he1, 3, SONG Xin-shu1, 3. Studies of the Fluorescence Properties of Methanol and Ethanol Based on the Density Functional Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1133-1138. |
[15] |
OUYANG Heng1,2*, XIAO Jian-ren3, LIN Xiu-yong4, FAN Gong-duan4*. Compositional Characteristics of Dissolved Organic Matter in Water Treatment Systems of Water Source Heat Pump Based on Three-Dimensional Fluorescence Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1146-1152. |
|
|
|
|