光谱学与光谱分析 |
|
|
|
|
|
Mineralogical and Spectral Characteristics of “Gaozhou Stone” from Jiangxi Province |
YUAN Ye1, 2, SHI Guang-hai2, LOU Fa-sheng1, WU Shi-jin1, SHI Miao2, HUANG An-jie3 |
1. Jiangxi Institute of Geological Survey, Nanchang 330030, China2. School of Gemmology, China University of Geosciences, Beijing 100083, China3. Northeast Jiangxi Geological Party, Jiangxi Bureau of Geology and Mineral Exploration, Shangrao 334000, China |
|
|
Abstract The seal stone is a kind of artwork with historical and cultural characteristics of China, which has been playing an important role in Chinese traditional culture. “Gaozhou stone”, a new kind of the seal stone, has been found in the market recently. To investigate the mineralogical and spectral characterastics of “Gaozhou stone”, samples were studied by using XRF, XRD, FTIR, SEM and DTA. Measurements by XRD reveal that kaolin minerals (kaolinite, dickite), pyrophyllite and minor sericite and illite occur in the ores. When kaolinite and dickite are associated, it is not easy to differentiate them from each other. Although some reflections overlap others, kaolin polytypes can be differentiated by XRD patterns in the range 18°~40° (2θ), the reflections at 0.395, 0.379, 0.343, 0.326, 0.294, 0.280, 0.232 and 0.221 nm are diagnostic of dickite. The XRD results indicate the presence of transitional mineral of kaolinite and dickite in these samples. The main chemical components of “Gaozhou stone” are SiO2 and Al2O3 with minor Fe2O3,K2O and Na2O, corresponding with that of kaolin minerals. The OH groups in kaolin group minerals have attracted considerable attention as a sensitive indicator of structural disorder. In principle, dickite has three bands, whereas kaolinite has four bands at the OH-stretching region. According to the results of FTIR, transitional mineral of kaolinite and dickite in “Gaozhou stone” has 3 absorption bands of 3 670, 3 650 and 3 620 cm-1 in high frequency region. The intensity of 3 670 cm-1 band that belongs to outer layer hydroxyl vibration is approximately equal to the intensity of 3 620 cm-1 band ascribing to inner layer OH vibration. This value will only have subtle changes due to the different component ratio of kaolinite and dickite layers. Micro-morphology viewed by SEM presents irregular platy or pseudo-hexagonal platy particles with an average diameter of 0.5~4 μm of “Gaozhou stone”. Such morphologies are quite similar to other seal stones of China that the formation environments of all these stones are of the same kind. DTA curves demonstrate that the disparity of dehydroxylation temperature can be seen as a differential feature for identifying kaolin group minerals, but that is not undoubted. And what’s more, the size of the mineral grains seems has a greater effect on the disparity of dehydroxylation temperature. This research shows that the mineral type of “Gaozhou stone” is similar to “Four Famous stones of China”, and it could be a viable substitute of other famous seal stones. In this point, “Gaozhou stone” has a broad market prospect.
|
Received: 2013-12-16
Accepted: 2014-03-12
|
|
Corresponding Authors:
YUAN Ye
E-mail: yuenyeah@163.com
|
|
[1] ZHANG Shou-liang,CUI Wen-yuan (张守亮,崔文元). Journal of Gems & Gemmology(宝石和宝石学杂志),2002,4(3): 22. [2] LIAO Zong-ting,TENG Ying,XU Yao-ming,et al(廖宗廷,腾 英,许耀明,等). Journal of Gems & Gemmology(宝石和宝石学杂志),2002,4(3): 26. [3] ZHU Xuan-min(朱选民). Acta Petrologica Et Mineralogica(岩石矿物学杂志),2003,22(1): 65. [4] Bailey S W, Structures of Layer Silicates. In: Brindley G W, Brown G, eds., Crystal Structures of Clay Minerals and Their X-ray Identification. London: Mineralogical Society, 1980. 1. [5] WEN Lu,LIANG Wan-xue,ZHANG Zheng-gang,et al(闻 辂,梁婉雪,章正刚,等). The Infrared Spectroscopy of Minerals(矿物红外光谱学). Chongqing:Chongqing University Press(重庆:重庆大学出版社),1988. 89. [6] Choo C O,Kim S J. Clay and Clay Minerals,2004,52(6):749. [7] Johnston C T,Kogel J E,Bish D L,et al. Clay and Clay Minerals,2008,56(4):470. [8] REN Lei-fu (任磊夫). Clay Minerals and Clay Rocks(粘土矿物与粘土岩). Beijing:Geological Publishing House(北京:地质出版社),1992. 13. [9] YANG Ya-xiu,ZHANG Nai-xian,SU Zhao-bing,et al(杨雅秀,张乃娴,苏昭冰,等). Clay Minerals of China(中国粘土矿物). Beijing:Geological Publishing House(北京:地质出版社),1994. 20. |
[1] |
LI Xiao-jun, HE Xian-li, SONG Rui-juan. Theoretical Study of Structures, Stabilities, and Infrared Spectra of the Alkali-Metal (Li2F)nM (M=Li, Na, K; n=1, 2) Clusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2064-2069. |
[2] |
JIAN Kuo1,2,LIU Shun-xi4,CHEN Yi-lin3,FU Xue-hai2,3*. Infrared Spectroscopic Study on the Structure Evolution of Low Rank Coal and Its Correlation with Carbon Isotope of Alkane Gas in Pyrolysis Process[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2070-2075. |
[3] |
WANG Shuai1, XU Jun-ping1, WANG Nan1, LEI Wan-ying1, FAN Xi-yan1, DOU Sen2, 3*. Structural Characteristics of Mineral-Microbial Residues Formed by Microbial Utilization of Lignin Joined with Fe, Al, Mn-Oxides Based on FT-IR and SEM Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2086-2093. |
[4] |
WANG Wen-xiu, PENG Yan-kun*, FANG Xiao-qian, BU Xiao-pu. Characteristic Variables Optimization for TVB-N in Pork Based on Two-Dimensional Correlation Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2094-2100. |
[5] |
HU Hua-ling1, 2, 3, LI Meng2, 3*, HE Xiao-song2, 3, XI Bei-dou2, 3, ZHANG Hui2, 3, LI Dan2, 3, HUANG Cai-hong2, 3, TAN Wen-bing2, 3. FTIR Spectral Characteristics of Rice Plant Growing in Mercury Contaminated Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2081-2085. |
[6] |
LE Ba Tuan1, 3, XIAO Dong1*, MAO Ya-chun2, SONG Liang2, HE Da-kuo1, LIU Shan-jun2. Coal Classification Based on Visible, Near-Infrared Spectroscopy and CNN-ELM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2107-2112. |
[7] |
MA Dian-xu1, LIU Gang1*, OU Quan-hong1, YU Hai-chao1, LI Hui-mei1, SHI You-ming2. Discrimination of Common Wild Mushrooms by FTIR and Two-Dimensional Correlation Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2113-2122. |
[8] |
DAI Li-li, SHI Guang-hai*, YUAN Ye, WANG Mei-li, WANG Yan. Infrared Spectroscopic Characteristics of Borneo and Madagascar Copal Resins and Rapid Identification between Them and Ambers with Similar Appearances[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2123-2131. |
[9] |
WANG Jie-jun1, CHEN Jia1,2, YE Song1, DONG Da-ming2*. Monitoring of Grape Decay via Its Volatiles Based on Open-Path Fourier Transform Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2132-2135. |
[10] |
LIU Jin, LUAN Xiao-li*, LIU Fei. Near Infrared Spectroscopic Modelling of Sodium Content in Oil Sands Based on Lasso Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2274-2278. |
[11] |
ZHANG Hao1, 2, 5, WANG Lin3, LONG Hong-ming2, 4, 5. Study on Composite Activating Mechanism of Alkali Steel Slag Cementations Materials by XRD and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2302-2306. |
[12] |
JU Wei1,LU Chang-hua1, 2,ZHANG Yu-jun2,JIANG Wei-wei1,WANG Ji-zhou1,LU Yi-bing2. Open-Path Fourier Transform Infrared Spectrum De-Noising Based on Improved Threshold Lifting Wavelet Transform and Adaptive Filter[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1684-1690. |
[13] |
SUN Heng1, JIN Hang2,3, HU Qiang1, KANG Ping-de1, CHEN Jun-fei1, HE Jia-wei1*, WANG Yuan-zhong2,3*. Infrared Spectroscopy Combined with Chemometrics for Rapid Determination of Total Flavonoids in Dendrobium Officinale[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1702-1707. |
[14] |
LI Yun1,2,3, ZHANG Ji1,2, LIU Fei4, XU Fu-rong3, WANG Yuan-zhong1,2*, ZHANG Jin-yu1,2,3*. Prediction of Total Polysaccharides Content in P. notoginseng Using FTIR Combined with SVR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1696-1701. |
[15] |
YU Hui-ling1, MEN Hong-sheng2, LIANG Hao2, ZHANG Yi-zhuo2*. Near Infrared Spectroscopy Identification Method of Wood Surface Defects Based on SA-PBT-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1724-1728. |
|
|
|
|