光谱学与光谱分析 |
|
|
|
|
|
Spectral Characteristics of Decomposition of Incorporated Straw in Compound Polluted Arid Loess |
FAN Chun-hui1, ZHANG Ying-chao2, XU Ji-ting1, WANG Jia-hong1 |
1. College of Resource & Environment, Shaanxi University of Science & Technology, Xi’an 710021, China 2. College of Environment, Tsinghua University, Beijing 100084, China |
|
|
Abstract The original loess from western China was used as soil sample, the spectral methods of scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS), elemental analysis, Fourier transform infrared spectroscopy (FT-IR) and 13C nuclear magnetic resonance (13C NMR) were used to investigate the characteristics of decomposed straw and formed humic acids in compound polluted arid loess. The SEM micrographs show the variation from dense to decomposed surface, and finally to damaged structure, and the EDS data reveal the phenomenon of element transfer. The newly-formed humic acids are of low aromaticity, helpful for increasing the activity of organic matters in loess. The FTIR spectra in the whole process are similar, indicating the complexity of transformation dynamics of humic acids. The molecular structure of humic acids becomes simpler, shown from 13C NMR spectra. The spectral methods are useful for humic acids identification in loess region in straw incorporation process.
|
Received: 2013-06-19
Accepted: 2013-11-20
|
|
Corresponding Authors:
FAN Chun-hui
E-mail: fanchunhui@sust.edu.cn
|
|
[1] Li Qiang, Hu Shanying, Chen Dingjiang, et al. Biomass and Bioenergy, 2012, 47(1): 277. [2] Patzel N, Ponge J F. European Journal of Soil Biology, 2001, 37(2): 117. [3] Van Veen J A, Merckx R, Van De Geijn S C. Plant and Soil, 1989, 115(2): 179. [4] WANG Xu-dong, GUAN Wen-ling, YIN Xian-qiang(王旭东, 关文玲, 殷宪强). Agricultural Research in the Arid Areas(干旱地区农业研究), 2001, 19(4): 11. [5] Page A L, Miller R H, Keeney D R. Methods of Soil Analysis. Part 2, 2nd. ed. Madison: Wisconsin USA, 1982. 581. [6] Kumada K. Chemistry of Soil Organic Matter. Amsterdam: Elsevier, 1987. 241. [7] Hooker B A, Morris F T, Peters R, et al. Soil Science Society of America Journal, 2005, 69(1): 188. [8] Candler R, Zech W, Alt H G. Soil Science, 1988, 146(6): 445. [9] ZHOU Jiang-min, DAI Jing-yu, PAN Gen-xing(周江敏, 代静玉, 潘根兴). Soils(土壤), 2004, 36(1): 46. [10] WANG Xu-dong, ZHANG Yi-ping, Lü Jia-long, et al(王旭东, 张一平, 吕家珑, 等). Scientia Agricultura Sinica(中国农业科学), 2000, 33(2): 75. [11] Inbar Y, Chen Y, Hadar Y. Soil Science, 1991, 152(4): 272. [12] Inbar Y, Chen Y, Hadar Y. Soil Science Society of America Journal, 1990, 54(5): 1316. [13] Schnitzer M, Preston C M. Soil Science Society of America Journal, 1986, 50(2): 326. [14] Inbar Y, Chen Y, Hadar Y. Soil Science Society of America Journal, 1989, 53(6): 1695. |
[1] |
WANG Xin-qiang1, 3, HU Feng1, 3, XIONG Wei2, YE Song1, 3, LI Shu1, 3, GAN Yong-ying1, 3, YIN Shan1, 3, WANG Fang-yuan1, 3*. Research on Raman Signal Processing Method Based on Spatial Heterodyne[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 93-98. |
[2] |
JIAO Qing-liang1, LIU Ming1*, YU Kun2, LIU Zi-long2, 3, KONG Ling-qin1, HUI Mei1, DONG Li-quan1, ZHAO Yue-jin1. Spectral Pre-Processing Based on Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 292-297. |
[3] |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3*. Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3909-3914. |
[4] |
ZHU Zhi-gao1, LIU Ya1*, YANG Jie1, HU Guo-qing2, 3. A Review of Single-Cavity Dual-Comb Laser and Its Application in Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3321-3330. |
[5] |
ZHANG Zhi-qi1, ZHAO Tong1, LIU Ling1, LI Yan1,2*. Spectral Characteristics of Madagascar Agates[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3227-3232. |
[6] |
WU Lu-yi, GAO Guang-zhen, LIU Xin, GAO Zhen-wei, ZHOU Xin, YU Xiong, CAI Ting-dong*. Study on the Calibration of Reflectivity of the Cavity Mirrors Used in Cavity Enhanced Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2945-2949. |
[7] |
LI Qing-yuan, LI Jing, WEI Xin, SUN Mei-xiu*. Performance Evaluation of a Portable Breath Isoprene Analyzer Based on Cavity Ringdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2415-2419. |
[8] |
YU Lei, WANG Ya-mei*. The Spectral Characteristics of “Edison” Pearls and Nucleated Pearls With Dyeing Treatment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2626-2632. |
[9] |
LU Wei1, CAI Miao-miao1, ZHANG Qiang2, LI Shan3. Fast Classification Method of Black Goji Berry (Lycium Ruthenicum Murr.) Based on Hyperspectral and Ensemble Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2196-2204. |
[10] |
TONG Li-hong1, ZHU Ling2, ZHAO Nan3, LÜ Yi-zhong1*, LIU Xia-yan1, JIANG Shan1, LI Ying-xin1. Spectroscopic Characteristics of Soil Humus Components Under Different Proportions of Organic and Inorganic Fertilizers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 523-528. |
[11] |
SHI Qi1, DING Long1, LONG Hong-ming1,2*, CHUN Tie-jun1. Study on Catalytic Combustion of Dioxins From Iron Ore Sintering Flue Gas Over Ce-V-Ti Catalysts by XRD and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 327-332. |
[12] |
KONG De-ming1, 3, SONG le-le1, CUI Yao-yao2*, ZHANG Chun-xiang1, WANG Shu-tao1. Three-Dimensional Fluorescence Spectroscopy Coupled With Parallel Factor and Pattern Recognition Algorithm for Characterization and Classification of Petroleum Pollutants[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2798-2803. |
[13] |
ZHOU Peng, LI Min-zan*, YANG Wei, JI Rong-hua, MENG Chao. Development of Vehicle-Mounted in-situ Soil Parameters Detector Based on NIR Diffuse Reflection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2856-2861. |
[14] |
ZHANG Jiu-ming1, 2, LIU Yi-dan4, ZHANG Yi-wen4, CHI Feng-qin1, 2*, WEI Dan3*, ZHOU Bao-ku1, 2, SU Qing-rui1, 2, KUANG En-jun1, 2, HAO Xiao-yu1, 2, SUN Lei1, 2. Spectroscopic Characteristics of Hu in Black Soil under Different Long-Term Fertilization Treatments[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(07): 2194-2199. |
[15] |
LIU Xiu-yu, ZHANG Bing, ZHANG Hao, DU Xiao-yan, TANG Gang*. Research of Flame Retardant Mechanism for RPUF/EG Composites Based on TG-FTIR and XPS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1626-1633. |
|
|
|
|