|
|
|
|
|
|
A Review of Single-Cavity Dual-Comb Laser and Its Application in Spectroscopy |
ZHU Zhi-gao1, LIU Ya1*, YANG Jie1, HU Guo-qing2, 3 |
1. Yunnan Key Laboratory of Opto-Electronic Information Technology, School of Physics and Electronic Information Technology, Yunnan Normal University, Kunming 650500, China
2. Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing 100192, China
3. Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing 100016, China |
|
|
Abstract Optical frequency comb is widely used in high precision measurement and metrology because of its characteristics such as constant frequency interval, wavelength stability, narrow spectral line width and wide spectral band width. Among them, the fast dual-comb measurement, including spectroscopy, absolute ranging, 3D imaging and ultra fast asynchronous optical sampling, has become one of the research hotspots. The dual-comb spectroscopy system based on free-running single-cavity dual-comb laser has attracted much attention due to its advantages of simple structure, large measurement range and high accuracy. This article first introduces the features of the optical frequency comb in the time domain and frequency domain andits application, especially the advantages of the dual-comb measurement. Compared with the current mainstream dual-comb source schemes, such as frequency-stabilized and phase-locked mode-locked laser, electro-optic modulation and so on, the single-cavity dual-comb laser scheme is expected to avoid the use of complex electronic control system and simplify the structure and decrease the volume and the cost of the dual-comb source. Therefore, this paper mainly introduces single-cavity dual-comb fiber laser technology with wavelength-multiplexing, polarization-multiplexing, space-multiplexing and pulse-shape-multiplexing, and analyzes the basic principles, performance parameters and current research progress, as well as the existing problems in the current development of these technologies. Moreover, the researches and performances of polarization-maintaining fiber dual-comb lasers with higher stability are summarized. Then, this paper introduces the principle of dual-comb spectroscopy, reviews the current spectral extension technology, and introduces some application cases of dual-comb spectroscopy based on the free-running single-cavity dual-comb laser in detail, including the near infrared band of the erbium-doped fiber laser and the detection extended to mid-infrared and terahertz bands. Finally, we summarize the development trends of single-cavity dual-comb lasers, including further improving frequency stability of single-cavity dual-comb lasers, decreasing the common-mode noise of single-cavity lasers, exploring the application of single-cavity dual-comb system in mid-infrared and terahertz band, and making single-cavity dual-comb mode-locked fiber laser to be practical.
|
Received: 2020-10-21
Accepted: 2021-02-03
|
|
Corresponding Authors:
LIU Ya
E-mail: liuya@buaa.edu.cn
|
|
[1] Hänsch T W. Review of Modern Physics, 2006, 78(4): 1297.
[2] Udem T, Holzwarth R, Hansch T W. Nature, 2002, 416(6877): 233.
[3] Elzinga P A, Lytle F E, Jian Y N, et al. Applied Spectroscopy, 1987, 41(1): 2.
[4] Fiechtner G J, King G B, Laurendeau N M, et al. Applied Optics, 1995, 34(6): 1108.
[5] Chen J, Zhao X, Yao Z J, et al. Optics Express, 2019, 27(8): 11406.
[6] Baumann E, Giorgetta F R, Swann W C, et al. Physical Review Letters, 2011, 84(6): 062513.
[7] Guay P, Tourigny-Plante A, Hébert N B, etal. Applied Optics, 2020, 59(7): B35.
[8] Ycas G, Giorgetta F R, Friedlein J T, et al. Optics Express, 2020, 28(10): 14740.
[9] Coddington I, Swann W C, Nenadovic L, et al. Nature Photonics, 2009, 3(6): 351.
[10] Liu T A, Newbury N R, Coddington I, et al. Optics Express, 2011, 19(19): 18501.
[11] Lin B K, Zhao X, He M Z, et al. IEEE Photonics Journal, 2017, 9(6): 7106508.
[12] LI Yue-peng, CAI Ya-wen, LI Run-min, et al(李月鹏,蔡雅雯,李润敏). Chinese Optics Letters(中国光学快报), 2019, 17(9): 091202.
[13] Zhao X, Zheng Z, Liu L, et al. Optics Express, 2012, 20(23): 25584.
[14] Ideguchi T, Poisson A, Guelachvili G, et al. Nature Communications, 2014, 5: 3375.
[15] Cassinerio M, Gambettaa A, Coluccelli N, et al. Applied Physics Letter, 2014, 104(23): 231102.
[16] Lee K, Lee J, Jang Y S, et al. Scientific Reports, 2015, 5: 15726.
[17] Li B W, Xing J, Kwon D, et al. Optica, 2020, 7(8): 961.
[18] Okazaki D, Morichika I, Arai H, et al. Optics Express, 2020, 28(14): 19997.
[19] Torres-Company V, Weiner A M. Laser & Photonics Review, 2014, 8(3): 368.
[20] Deniel L, Weckenmann E, Galacho D P, et al. Optics Express, 2020, 28(8): 10888.
[21] Del’Haye P, Schliesser A, Arcizet O, et al. Nature, 2007, 450(7173): 1214.
[22] Yu M J, Okawachi Y, Griffith A G, et al. Nature Communications, 2018, 9: 1869.
[23] Luo Z C, Luo A P, Xu W C, et al. IEEE Photonics Journal, 2010, 2(4): 571.
[24] Zhao X, Zheng Z, Liu L, et al. Optics Express, 2011, 19(2): 1168.
[25] Zhao X, Hu G Q, Zhao B F, et al. Optics Express, 2016, 24(19): 21833.
[26] Luo X, Tong H T, Than S S, et al. Optics Express, 2019, 27(10): 14635.
[27] Zhu Y J, Cui Z K, Sun X G, et al. Optics Express, 2020, 28(19): 27250.
[28] Chen J, Zhang T L, Wang R L, et al. Dual-Wavelength, Dual-Comb Fiber Laser Based on a Nearly-Adiabatic Fiber-Taper Filter, Frontiers in Optics, 2016, JTh2A. 112.
[29] Luo X, Tuan T H, Saini T S, et al. Optics Communications, 2020, 463: 125457.
[30] Shi H S, Song Y J, Li R M, et al. Nanotechnology and Precision Engineering, 2018, 1(4): 205.
[31] Gong Z, Zhao X, Hu G Q, et al, Polarization Multiplexed, Dual-Frequency Ultrashort Pulse Generation by a Birefringent Mode-Locked Fiber Laser, Conference on Lasers and Electro-Optics, 2014, JTh2A: 20.
[32] Liu Y, Zhao X , Zhao B F, et al. High-Resolution, Dual-Comb Spectroscopy Enabled by a Polarization-Multiplexed, Dual-Comb Femtosecond Fiber Laser, Conference on Lasers and Electro-Optics, 2016, AM4K: 5.
[33] Zhao X, Li T , Liu Y, et al. Photonics Research, 2018, 6(9): 853.
[34] Sterczewski L A, Przewloka A, Kaszub W, et al. APL Photonics, 2019, 4: 116102.
[35] Nakajima Y, Hata Y, Minoshima K. Optics Express, 2019, 27(10): 14648.
[36] Link S M, Mangold M, Golling M, et al. Gigahertz Dual-Comb Modelocked Diode-Pumped Semiconductor and Soild-State Lasers, Proceedings of SPIE, 2016: 9734.
[37] Kovalev A V, Uskov A V, Vitkin V V, et al. Dual Comb Mode-Locked Laser: Design and Stabilization, Progress in Electromagnetics Research Symposium-Spring, 2017: 1135.
[38] Chang M T, Liang H C, Su K W, et al. Optics Express, 2015, 23(8): 10111.
[39] Liang H C, Wu C S. Optics Express, 2017, 25(12): 13697.
[40] Kieu K, Mansuripur M. Optics Letters, 2008, 33(1): 64.
[41] Mehravar S, Norwood R A, Peyghambarian N, et al. Applied Physics Letters, 2016, 108(23): 231104.
[42] Zhao X, Zheng Z, Liu Y, et al. IEEE Photonics Technology Letters, 2014, 26(17): 1722.
[43] Hu G Q, Pan Y L, Zhao X, et al. Optics Letters, 2017, 42(23): 4942.
[44] Nakajima Y, Hata Y, Minoshima K. Optics Express, 2019, 27(5): 5931.
[45] Liu Y, Zhao X, Hu G Q, et al. Optics Express, 2016, 24(19): 21392.
[46] Liu Y, Zhao X, Liu J S, et al. Optics Express, 2014, 22(17): 21012.
[47] Wang R, Zhao X, Bai W, et al. Polarization-Maintaining, Dual-Wavelength, Dual-Comb Mode-Locked Fiber Laser, Conference on Lasers and Electro-Optics, 2018, JTh2A: 139.
[48] Li R M, Shi H S, Tian H C, et al. Optics Express, 2018, 26(22): 28302.
[49] Fellinger J, Mayer A S, Winkleret G, et al. Optics Express, 2019, 27(20): 28062.
[50] Kolano M, Molter D, Ellrich F, et al. All-Polarization-Maintaining, Polarization-Multiplexed, Dual-Frequency, Mode-Locked Fiber Laser, Conference on Lasers and Electro-Optics, 2016, AM2J: 3.
[51] Saito S, Yamanaka M, Sakakibara Y, et al. Optics Express, 2019, 27(13): 17868.
[52] Coddington I, Swann W C, Newbury N R. Physical Review, 2010, 82(4): 043817.
[53] Potvin S, Genest J, et al. Optics Express, 2013, 21(25): 30707.
[54] MA Jin-dong, LU Qiao, DUAN Dian, et al(马金栋, 路 桥, 段 典). Chinese Journal of Quantum Electronics(中国量子电子学报), 2019, 36(4): 428.
[55] Bernhardt B, Sorokin E, Jacquet P, et al. Applied Physics B, 2010, 100(1): 3.
[56] Jin Y W, Cristescu S M, Harren F J M, et al. Applied Physics B, 2015, 119(1): 65.
[57] Gustavo V, Andreas A, Stephane B, et al. Nature Comunications, 2014, 5: 5192.
[58] Yasui T, Iyonaga Y, Hsieh Y D, et al. Optica, 2015, 2(5): 460.
[59] Mehravar S, Norwood R A, Peyghambarian N, et al. Applied Physics Letter, 2016, 108(23): 231104.
[60] Hébert N B, Genest J, Deschênes J D, et al. Optics Express, 2017, 25(7): 8168.
[61] Liao R Y, Song Y J, Liu W, et al. Optics Express, 2018, 26(8): 11046.
[62] Chen J, Zhao X , Yao Z J, et al. Optics Express, 2019, 27(8): 11406.
[63] Hu G Q, Mizuguchi T, Oe R, et al. Scientific Reports, 2018, 8: 11155.
[64] Chen J, Nitta K, Zhao X, et al. Advanced Photonics, 2020, 2(3): 036005. |
[1] |
QUAN Cong1, 2, SUN Dun-lu1*, LUO Jian-qiao1, ZHANG Hui-li1,3, FANG Zhong-qing1, 2, ZHAO Xu-yao1, 2, HU Lun-zhen1, 2, HAN Zhi-yuan1, 2, CHENG Mao-jie1,YIN Shao-tang1. Investigation on the Multiwavelength Laser Operation and Polarization Characteristics of Er∶YAP Crystal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2325-2331. |
[2] |
MEI Jiao-xu, WANG Lei*, TAN Tu, LIU Kun, WANG Gui-shi, GAO Xiao-ming. A New Method of DFB Laser Frequency Stabilization Based on the Characteristics of the Second Harmonic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 2989-2992. |
[3] |
WANG Wen-liang, LI Zhi-ming, SHEN Xiao-pan, XU Jiang, ZHAI Li-hua, DENG Hu, WEI Guan-yi. A Laser Resonance Ionization Spectroscopy Apparatus for Study on Atomic Energy Level[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3653-3657. |
[4] |
HUANG Ren-shuai, GUO Xiao-yang, MENG Qing-long, ZHANG Bin* . Study on Output Frequency Stability for Optically Pumped THz Lasers [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(09): 2755-2759. |
[5] |
LIU Jing-wang1,2, LI Zhong-yang3, ZHANG Wei-zhong4, WANG Qing-chuan4, AN Ying5, LI Yong-hui2. Dynamic Wavelength Characteristics of Semiconductor Laser in Electric Current Tuning Process[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(11): 3220-3223. |
[6] |
SHAO Jie1, HAN Ye-xing1, GUO Jie1, WANG Li-ming1, HAN Ying1, YING Chao-fu1, WANG Yao2 . Research on Spectrum Technology Based on SG-DBR Laser [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(07): 1774-1779. |
[7] |
YAO Ke1, FENG Guo-ying1*, YANG Li-ling1, YI Jia-yu1, ZHOU Shou-huan1,2 . Spatial Localized Distribution of Modes in Two-Dimension Random Medium[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(10): 2743-2748. |
[8] |
YUAN Sheng-fu, LUO Wei, ZOU Qian-jin, YAN Bao-zhu . Measurement and Evaluation of Middle Infrared and Long Infrared Dual-Band Laser Emitting Spectrum [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(01): 83-87. |
[9] |
SUN Cheng-lin1, 2,LIANG Xue-mei1,QIN Li1,JIA Li-hua1,NING Yong-qiang1,WANG Li-jun1* . Broad-Area Vertical Cavity Semiconductor Optical Amplifiers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30(05): 1413-1416. |
|
|
|
|