光谱学与光谱分析 |
|
|
|
|
|
DFT/TDDFT Study on the Structure and Absorption Spectra of Free Base, N-/Neo-Confused Porphyrin |
LIU Guo-kui1, CAO Hong-yu1, 2, LI Shen-min2, TANG Qian1, 2, YANG Yan-jie1, ZHENG Xue-fang1, 2* |
1. School of Life Science and Biotechnology, Dalian University, Dalian 116622, China2. Liaoning Key Laboratory of Bio-organic Chemistry, Dalian University, Dalian 116622, China |
|
|
Abstract Porphyrin is an important class of photochemical materials, which has been widely used in various fields. Computational investigations into the ground state structures and orbital energy levels of free base porphyrin (FBP), neo-confused porphyrin (NECP) and N-confused porphyrin (NCP) were performed with density functional theory(DFT). Absorption spectra were calculated at TD-B3LYP/6-31+G(d). Degeneracy of HOMO and HOMO-1 is lost, which would account for the shoulder peaks about the most intense transitions of FBP and NECP. Following FBP, NECP and NCP order, the orbital energy level (OEL) of LUMO decreases while the OEL of HOMO increases, which lead to the red shift of adsorption spectra. The energy difference between LUMO and LUMO+1 is almost the same as the difference between HOMO and HOMO-1, which would account for the only most intense transition of NCP. Solvent effect on ground state structures and absorption spectra was also investigated. The data shows that the character peak of Soret band and Q band changes in different solvent (benzene, chloroform, acetonitrile and water). So we further focus on discussing the N atom position and solvent effects on the energy level and Soret/Q bands of FBP, NCP and NECP, as well as clarifying its variation regularity and mechanism.
|
Received: 2013-03-14
Accepted: 2013-06-22
|
|
Corresponding Authors:
ZHENG Xue-fang
E-mail: dlxfzheng@126.com
|
|
[1] Gouterman, M. Optical Spectra and Electronic Structure of Porphyrins and Related Rings. In the Porphyrins, Dolphin, D., Ed. Academic Press: New York: 1978,3:1. [2] Ghosh A. Quantum Chemical Studies of Molecular Structures and Potential Energy Surfaces of Porphyrins and Hemes. In the Porphyrin Handbook, Kadish, K M, Guilard R, Smith K M. Eds. Academic Press, 1999, 7: 1. [3] Merchán M, Ortí E, Roos B O. Chem. Phys. Lett., 1994, 226(1-2): 27. [4] Nakatsuji H, Hasegawa J Y, Hada M. J. Chem. Phys., 1996, 104(6): 2321. [5] Kitao O, Ushiyama H, Miura N. J. Chem. Phys., 1999, 110(6): 2936. [6] van Gisbergen S J A, Rosa A, Ricciardi G, et al. J. Chem. Phys., 1999, 111(6): 2499. [7] Sundholm D. Phys. Chem. Chem. Phys., 2000, 2(10): 2275. [8] Seda J, Burda, J V, Brázdová V, et al. Int. J. Mol. Sc., 2004, 5(4): 196. [9] Seda J, Burda J V, Leszczynski J. J. Comput. Chem., 2005, 26(3): 294. [10] Liu X J, Pan Q J, Meng J, et al. J. Mol. Struc-Theochem, 2006, 765(1-3): 61. [11] Zhang Y H, Ruan W J, Li Z Y, et al. Chem. Phys., 2005, 315(1-2): 201. [12] Petit L, Quartarolo A, Adamo C, et al. J. Phys. Chem. B, 2006, 110(5): 2398. [13] Furuta H, Asano T, Ogawa T. J. Am. Chem. Soc., 1994, 116(2): 767. [14] Chmielewski P J, Latos-Grazyński L, Rachlewicz K, et al. Angew. Chem. Int. Ed., 1994, 33(7): 779. [15] Furuta H, Maeda H, Osuka A. J. Am. Chem. Soc., 2000, 122(5): 803. [16] Karabiyik H, Gkce A G, Aygün M. J. Mol. Struc-Theochem, 2004, 673(1-3): 191. [17] Maeda H, Furuta H. Pure Appl. Chem., 2006, 78(1): 29. [18] Toganoh M, Harada N, Morimoto T, et al. Chem-Eur. J., 2007, 13(8): 2257. [19] Zhu Y, Zhou S, Kan Y, et al. J. Chem. Phys., 2007, 126(24): 245106. [20] Lash T D, Von Ruden A L. J. Org. Chem., 2008, 73(23): 9417. [21] Vyas S, Hadad C M, Modarelli D A. J. Phys. Chem. A, 2008, 112(29): 6533. [22] Toganoh M, Furuta H. J. Phys. Chem. A, 2009, 113(50): 13953. [23] Lee J S, Lim J M, Toganoh M, et al. Chem. Commun., 2010, 46(2): 285. [24] Aleman E A, Manriquez Rocha J, Wongwitwichote W, et al. J. Phys. Chem. A, 2011, 115(24): 6456. [25] Tzeli D, Petsalakis I D, Theodorakopoulos G. J. Phys. Chem. A, 2011, 115(42): 11749. [26] Lash T D, Lammer A D, Ferrence G M. Angew. Chem. Int. Ed., 2011, 50(41): 9718. [27] Fujino K, Hirata Y, Kawabe Y, et al. Angew. Chem. Int. Ed., 2011, 50(30): 6855. [28] Frisch M J, Trucks G W, Schlegel H B. Scuseria, Gaussian 03, Revision B.04, Gaussian Inc.: Pittsburgh, PA, 2003. [29] O'Boyle N M, Tenderholt A L, Langner K M. J. Comput. Chem., 2008, 29(5): 839. [30] Furuta H, Ishizuka T, Osuka A, et al. J. Am. Chem. Soc., 2001, 123(25): 6207. [31] Gouterman M. J. Mol. Spectrosc., 1961, 6: 138. |
[1] |
LI Zheng-hui1,3, YAO Shun-chun1,3*, LU Wei-ye2, ZHU Xiao-rui1,3, ZOU Li-chang1,3, LI Yue-sheng2, LU Zhi-min1,3. Study on Temperature Correction Method of CO2 Measurement by TDLAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2048-2053. |
[2] |
XIE Jun1, ZHAO Ya-nan1, CHEN Xuan-jing1, WANG Ke1, XU Chun-li1, LI Dan-ping1, ZHANG Yue-qiang1, 2, WANG Ding-yong1, SHI Xiao-jun1, 2*. Effect on Soil DOM Content and Structure Characteristics in Different Soil Layers by Long-Term Fertilizations[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2250-2255. |
[3] |
ZHONG Qian1, 2, 3, WU Qiong2, 3, LIAO Zong-ting1, 2, 3*, ZHOU Zheng-yu1, 2, 3. Vibrational Spectral Characteristics of Ensignia Actinolite Jade from Guangxi, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1786-1792. |
[4] |
XU Xing-wei1, 2, WANG Wei1*, LIU Cheng3, SHAN Chang-gong4, SUN You-wen1, HU Qi-hou1, TIAN Yuan1, HAN Xue-bing1, YANG Wei1. Observations of Total Columns of CO Based on Solar Absorption Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1329-1334. |
[5] |
ZHU Cong-hai1, 3, CHEN Guo-qing1, 3*, ZHU Chun1, 2, 3, ZHAO Jin-chen1, 3, LIU Huai-bo1, 3, ZHANG Xiao-he1, 3, SONG Xin-shu1, 3. Studies of the Fluorescence Properties of Methanol and Ethanol Based on the Density Functional Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1133-1138. |
[6] |
LING Liu-yi1, 3*, WEI Ying2, HUANG You-rui1, HU Ren-zhi3, XIE Pin-hua3*. Calibration Method of Broadband Cavity Enhanced Absorption Spectroscopy for Measuring Atmospheric NO2[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 670-675. |
[7] |
LI Meng, GUO Jin-jia*, YE Wang-quan, LI Nan, ZHANG Zhi-hao, ZHENG Rong-er. Study on TDLAS System with a Miniature Multi-Pass Cavity for CO2 Measurements[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 697-701. |
[8] |
CHI Hao-tian, WANG Xu-lin*, QUAN Wei*. Pressure Measurement of Each Gas in Alkali-Metal Vapor Cell with a Mixed Gas Based on Saturated Absorption Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 948-952. |
[9] |
ZHU Gao-feng1, 2, HU Xin1, ZHU Hong-qiu1*, HU En-ze1, ZHU Jian-ping3. The Multi-Beam Interference Suppression for Measuring Penicillin Vial’s Oxygen Concentration Based on Tunable Diode Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 372-376. |
[10] |
GOU Yu-dan1, LU Peng-fei1, HE Jiu-ning1, ZHANG Chang-hua1*, LI Ping1, LI Xiang-yuan2. Measurement of H2O Spectroscopic Parameters near 1.39 μm and Application in Combustion Kinetics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 176-180. |
[11] |
TAO Wei-liang1, LIU Yan2, WANG Xian-pei1, WU Qiong-shui1. Implementation of Overlapping Peak Separation Algorithm for Absorption Spectra by Fractal Dimension Analysis in Time-Frequency Domain[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3664-3669. |
[12] |
XIA Hua1,DONG Feng-zhong1, 2, HAN Luo1, 2, WU Bian1, SUN Peng-shuai1, 2, ZHANG Zhi-rong1, CUI Xiao-juan1. The Study of Atmospheric Carbon Isotope with Laser Absorption Spectroscopy at the Mid-Infrared Wavelength[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3365-3369. |
[13] |
LIU Peng-xi, WAN Xiong*, ZHANG Ting-ting. Species Identify Based on Visible Absorb Spectrum of Whole Blood[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3510-3513. |
[14] |
LI Chuan-liang1*, JIANG Li-jun1, SHAO Li-gang1, GUO Xin-qian1, QIU Xuan-bing1, WEI Ji-lin1, GAO Rui1, WANG Gao2. The Detection of CO Based on TDLAS Combined with Balanced Difference Detection Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3165-3169. |
[15] |
LIU Fei1, 2, DONG Da-ming1*, ZHAO Xian-de1, ZHENG Pei-chao2*. Online Measurement of Water COD-A Comparison between Ultraviolet and Near Infrared Spectroscopies[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2724-2729. |
|
|
|
|