光谱学与光谱分析 |
|
|
|
|
|
Research on Electron Density in DC Needle-Plate Corona Discharge at Atmospheric Pressure |
LIU Zhi-qiang, GUO Wei*, LIU Tao-tao, WU Wen-shuo, LIU Shu-min |
Electrostatic Research Institute of Hebei University, Baoding 071002, China |
|
|
Abstract Using needle-plate discharge device, corona discharge experiment was done in the atmosphere. Through photo of spot size of light-emitting area, the relationship between the voltage and thickness of corona layer was discussed. When the distance between tip and plate is fixed, the thickness of corona layer increases with the increase in voltage; when the voltage is fixed, the thickness of corona layer decreases with the increase in the distance between tip and plate. As spectral intensity of N2(C3Πu)(337.1 nm)reflects high energy electron density, it was measured with emission spectrometry. The results show that high energy electron density is the biggest near the needle tip and the relationship between high energy electron density and voltage is basically linear increasing. Fixing voltage, high energy electron density decreases with the increase in the distance between tip and plate. When the voltage and the distance between tip and plate are fixed, the high energy electron density increases with the decrease in the curvature radius of needle tip. These results are of great importance for the study of plasma parameters of corona discharge.
|
Received: 2013-03-02
Accepted: 2013-06-08
|
|
Corresponding Authors:
GUO Wei
E-mail: 767356208@qq.com
|
|
[1] Staack D, Arouk B F, Fridman A. Plasma Sources Sci. Tehnol.,2008, 17: 025013. [2] Chen Junhong, Davidson Jane H. Plasma Chemistry and Plasma Processing, 2003, 23(1): 83. [3] ZHU Yi-min,YANG Shu(朱益民,杨 树). Environment Science Technology(环境科学技术),2010, 33(6E): 86. [4] Gallimberl I, Klewel R C. Phys. D: Appl. Phys., 1974, 7: 800. [5] Milan Simek, Martin Clupek. Phys. D: Appl. Phys., 2001, 34: 3185. [6] Spyrou N, Manassis C. Phys. D: Appl. Phys., 1989, 22: 120. [7] Choi J H,Lee E S. Plasma Sources Sci. Technol., 2006, 15: 416. |
[1] |
SONG Fei-long, JIN Di, JIA Min, SONG Zhi-jie. Spectral Characteristics Study of Atmospheric Pressure Argon Volume Dielectric Barrier Discharge[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1675-1679. |
[2] |
LI Xue-chen, WU Kai-yue, ZHANG Qi, CHU Jing-di, WANG Biao, LIU Rui, JIA Peng-ying*. Effect of Frequency on Spectral Charteristics of Dielectric Barrier Discharge Excited by a Saw-Tooth Voltage[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1380-1383. |
[3] |
ZHENG Pei-chao, TANG Peng-fei, WANG Jin-mei*, LI Shi-yu. Analysis of Metal Elements Manganese Using Solution Cathode Glow Discharge-Atomic Emission Spectrometry with Portable Spectrographs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1567-1571. |
[4] |
DENG Lei, ZHANG Gui-xin*, LIU Cheng, XIE Hong. Measurement of the Gas Temperature in Microwave Plasma by Molecular Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 627-633. |
[5] |
YAO Hong-bing1, YANG Feng-xiao1*, YUAN Dong-qing2, TONG Yan-qun1, YANG Zhao3, CONG Jia-wei1, Emmanuel Asamoah1, WANG Cheng1. Experimental Investigation on the Electron Temperature of Laser-Induced Ti Plasmas[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3851-3854. |
[6] |
ZHAO Xiao-tong, SUN Bing*, ZHU Xiao-mei, YAN Zhi-yu, LIU Yong-jun, LIU Hui. Characteristics of Light Emission and Radicals Formed by Microwave Discharge Electrolysis of an Aqueous Solution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3855-3858. |
[7] |
REN Lin-jiao, ZHANG Pei, QI Ru-bin, YIN Jing, LIU Shuai, ZHANG Ji-tao, CHEN Qing-hua, JIANG Li-ying*. Influencing Factors of Luminescence Properties of Carbon Dots Prepared by Ultrasonic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3354-3359. |
[8] |
TANG Qian1, 3, SU Jin-hong2, 3, CAO Hong-yu1, 3, WANG Li-hao2, 3, GAO Ling-xing2, 3, ZHENG Xue-fang1, 3*. Study on the Interaction Between the Anti-HIV Drug Stavudine and the Blood Protein[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3485-3492. |
[9] |
FENG Xiao-gui1, KONG Xue-yan2, HE Qian-ge1, WANG Jian-chen1, CHEN Jing1. A Modified Standard Addition Method and Its Application in ICP Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3579-3584. |
[10] |
WANG Kai1,LIU Min2,MAO Jie2,DENG Zi-qian2,WEN Kui1. Spectroscopic Method for Diagnosing PS-PVD Jet of Different Gas Composition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 2995-2999. |
[11] |
ZHENG Pei-chao, ZHAI Xiang, WANG Jin-mei*, YANG Rui. Analysis of Solution Cathode Glow Discharge Atomic Emission Spectroscopy by the Multiple Linear Regression Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3209-3213. |
[12] |
ZHENG Pei-chao, TANG Peng-fei, WANG Jin-mei*, YANG Rui. Quantitative Analysis of Solution Cathode Glow Discharge-Atomic Emission Spectroscopy Coupled with Internal Standard Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2900-2904. |
[13] |
XU Dan-zhi1, FENG Jing1, YANG Xiao-yun2, ZU En-dong1, CUI Xiao-ying2, LIN Jin-chang2, DONG Kun2*. Preparation and Spectroscopic Characteristics of CaAl2Si2O8∶Eu, Ce, Tb Fluorescent Material[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1804-1808. |
[14] |
SONG Yi, LOU Guo-feng*, ZHANG Fan, YANG Yang. Emission Spectrum Diagnosis of Argon/Methane/Air Dielectric Barrier Discharge Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1237-1242. |
[15] |
WANG Yong-qing, CHEN Yan-ru, ZHAO Qi*, ZHOU Mu-chun, SHAO Yan-ming. On-Line Measurement of Converter Combustion Flame with Radiation Thermometry and AES[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1243-1249. |
|
|
|
|