光谱学与光谱分析 |
|
|
|
|
|
Research on the Content Prediction Model for the Determination of Nickel in Soil by Portable Energy Dispersive X-Ray Fluorescence Analyzer |
WANG Guang-xi, LI Dan*, LAI Wan-chang, ZHAI Juan, YANG Zhong-jian, HOU Xin, CAO Fa-ming |
College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China |
|
|
Abstract The present paper discusses the influence of matrix effect on measurement results when portable energy dispersive X-ray fluorescence analyzer is used for the determination of Ni in soil. Based on the scattered X-ray intensity of WLα emitted from the X-ray tube on the sample, a correction method was proposed, and it combines with the correction of absorption element, which can effectively overcome the matrix effect. The correlation coefficient of the content prediction model based on this method is 0.999 and the residual standard deviation is 2.541. The average relative error is 3.90% when the content prediction model is used to measure the content of Ni in the national standard soil samples, so the results coincide well with standard values, and the precision is high.
|
Received: 2013-05-02
Accepted: 2013-06-24
|
|
Corresponding Authors:
LI Dan
E-mail: lidan08@cdut.cn
|
|
[1] BAI Xiao-rui, TANG Jing-chun, SHI Rong-guang, et al(白晓瑞, 唐景春, 师荣光, 等). Journal of Safety and Environment(安全与环境学报), 2011, 11(5): 123. [2] YANG Ding-qing(杨定清). Southwest China Journal of Agricultural Sciences(西南农业学报), 1996, 9(4): 109. [3] Li Z, Shuman L M. The Science of the Total Environment, 1996, 191(1-2): 95. [4] Brown P H, Welch R M, Cary E E. Plant Physiology, 1987, 85(3): 801. [5] LIAO Jin-feng(廖金凤). Rural Eco-Environment(农村生态环境), 1999, 15 (4): 52. [6] LIAO Xiao-yong, CHEN Tong-bin, WU Bin, et al(廖晓勇, 陈同斌, 武 斌, 等). Geographical Research(地理研究), 2006, 25(5): 843. [7] HAO Qi-yong, YIN Er-qin(郝启勇, 尹儿琴). Energy Environmental Protection(能源环境保护), 2012, 26(3): 57. [8] Ministry of Environmental Protecting of the People’s Republic of China(中华人民共和国环境保护部), GB 15618—1995, Environmental Quality Standard for Soil(国家标准15618—1995: 土壤环境质量标准). Beijing: Standards Press of China(北京: 中国标准出版社), 1995. 1. [9] REN Hai-xian, WANG Ying-jin(任海仙, 王迎进). Journal of Molecular Science(分子科学学报), 2009, 25(3): 213. [10] Madan Lal, Choudhury R K, Joseph D, et al. Journal of Radioanalytical and Nuclear Chemistry, 1989, 137(2): 127. [11] Tiwari M K, Singh A K, Sawhney K J S. Bulletin of Materials Science, 2001, 24(6): 633. [12] Akeredolu. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 353(1-3): 542. [13] HUA Li, GUO Xing-peng, YANG Jia-kuan(华 丽, 郭兴蓬, 杨家宽). Journal of Huazhong Normal University(Nat. Sci.)(华中师范大学学报·自然科学版), 2009, 43(4): 622. [14] ZHANG Wei, ZHANG Yu-jun, CHEN Dong(章 炜, 张玉钧, 陈 东). Laser&Optoelectronics Progress(激光与光电子学进展), 2012, (1): 137. [15] ZHANG Wei, ZHANG Yu-jun, CHEN Dong, et al(章 炜, 张玉钧, 陈 东, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2012, 32(4): 1123. [16] XIE Zhong-xin, ZHAO Zong-ling, ZHANG Yu-bin, et al(谢忠信, 赵宗铃, 张玉斌, 等). X-Ray Spectral Analysis(X射线光谱分析), Beijing: Science Press(北京: 科学出版社), 1982. 291, 331. [17] GE Liang-quan, ZHOU Si-chun, LAI Wan-chang(葛良全, 周四春, 赖万昌). In-Situ X Radiation Sampling Technique(原位X辐射取样技术). Chengdu: Science and Technology Press(成都: 科学技术出版社), 1997. 75, 83. [18] GE Liang-quan, ZHANG Ye, XIE Ting-zhou, et al(葛良全, 章 晔, 谢庭周, 等). Geoscience(现代地质), 1994, 8(3): 335. [19] HOU Sheng-li, ZHANG Ye(侯胜利, 章 晔). Geoscience(现代地质), 1999, 13(1): 117. |
[1] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[2] |
JI Rong-hua1, 2, ZHAO Ying-ying2, LI Min-zan2, ZHENG Li-hua2*. Research on Prediction Model of Soil Nitrogen Content Based on
Encoder-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1372-1377. |
[3] |
Yumiti Maiming1, WANG Xue-mei1, 2*. Hyperspectral Estimation of Soil Organic Matter Content Based on Continuous Wavelet Transformation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1278-1284. |
[4] |
WANG Wei-hong1, 2*, LUO Xue-gang1, 3, WU Feng-qiang1, 2, LIN Ling1, 2, LI Jun-jie1, 2. Spectral Angles of Plant Leaves as Indicators of Uranium Pollution in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1313-1317. |
[5] |
ZHAO Rui1, SONG Hai-yan1*, ZHAO Yao2, SU Qin1, LI Wei1, SUN Yi-shu1, CHEN Ying-min1. Research on Anti-Moisture Interference Soil Organic Matter ModelBased on Characteristic Wavelength Integration Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 984-989. |
[6] |
FAN Chun-hui1,2, ZHENG Jin-huan3, WANG Yu-fei3, SU Zhe3, LIN Long-jian3, YANG Chen3. Adsorption of Cadmium on Fe-Mn Nodules Derived From Soil by Spectral Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 616-621. |
[7] |
LIU Tian-shun1, 2, LI Peng-fa1, 2, LI Gui-long1, 2, WU Meng1, LIU Ming1, LIU Kai1, 2, LI Zhong-pei1, 2*. Using Three-Dimensional Excitation-Emission Matrix to Study the Compositions of Dissolved Organic Matter in the Rhizosphere Soil of Continuous Cropping Peanuts With Different Health States[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 634-641. |
[8] |
ZHU Hai-jun1, FU Hong-yu1, 2, WANG Xue-hua1*, CUI Guo-xian1, 2*,SHI Ai-long1, XUE Wei-chun3. Preliminary Study on the Intertemporal Predictability of the Physiological Index of Early Rice Based on Hyperspectral[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 170-175. |
[9] |
LUO De-fang1, LIU Wei-yang1*, PENG Jie1, FENG Chun-hui1, JI Wen-jun2, BAI Zi-jin1. Field in Situ Spectral Inversion of Cotton Organic Matter Based on Soil Water Removal Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 222-228. |
[10] |
ZHOU Peng, WANG Wei-chao, YANG Wei*, JI Rong-hua, LI Min-zan. Effect of Soil Particle Size on Prediction of Soil Total Nitrogen Using Discrete Wavelength NIR Spectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3682-3687. |
[11] |
LIU Qin-rong1, DU Zi-wei1, LI Jia-zhen1, WANG Yi-shuo1, 3*, GU Xuan2, CUI Xiu-mei2. Analysis and Evaluation of Inorganic Elements in Salvia miltiorrhiza and Rhizosphere Soils From Different Areas[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3618-3624. |
[12] |
YANG Han, CAO Jian-fei*, WANG Zhao-hai*, WU Quan-yuan. Study on Soil Salinity Estimation Method of “Moisture Resistance” Using Visible-Near Infrared Spectroscopy in Coastal Region[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3077-3082. |
[13] |
LUO De-fang1, PENG Jie1*, FENG Chun-hui1, LIU Wei-yang1, JI Wen-jun2, WANG Nan3. Inversion of Soil Organic Matter Fraction in Southern Xinjiang by Visible-Near-Infrared and Mid-Infrared Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3069-3076. |
[14] |
LIU Wei, YU Qiang*, NIU Teng, YANG Lin-zhe, LIU Hong-jun, YAN Fei. Study on the Relationship Between Element As in Soil of Agricultural Land and Leaf Spectral Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2866-2871. |
[15] |
XU Lu*, WANG Hui, QIU Si-yi, LIAN Jing-wen, WANG Li-juan. Coastal Soil Salinity Estimation Based Digital Images and Color Space Conversion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2409-2414. |
|
|
|
|