光谱学与光谱分析 |
|
|
|
|
|
Characterizing Composition and Transformation of Dissolved Organic Matter in Subsurface Wastewater Infiltration System |
WANG Li-jun1, 2, LIU Yu-zhong1, ZHANG Lie-yu2*, XI Bei-dou2, XIA Xun-feng2, LIU Ya-ru3 |
1. School of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, China2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China3. Zhongtianyuan Architects & Engineers Ltd., Beijing 100142, China |
|
|
Abstract In the present study, the soil column with radius of 30 cm and height of 200 cm was used to simulate a subsurface wastewater infiltration system. Under the hydraulic loading of 4 cm·d-1, composition and transformation of dissolved organic matter (DOM) from different depths were analyzed in a subsurface wastewater infiltration system for treatment of septic tank effluent using three-dimensional excitation emission matrix fluorescence spectroscopy (3D-EEM) with regional integration analysis (FRI). The results indicate that: (1) from different depth, the composition of DOM was also different; influent with the depth of 0.5 m was mainly composed of protein-like substances, and that at other depths was mainly composed of humic- and fulvic-like substances. (2) DOM stability gradually increased and part of the nonbiodegradable organic matter can be removed during organic pollutants degradation process. (3) Not only the organic pollutants concentration was reduced effectively, but also the stability of the DOM improved in subsurface wastewater infiltration system.
|
Received: 2012-12-19
Accepted: 2013-02-28
|
|
Corresponding Authors:
ZHANG Lie-yu
E-mail: zhanglieyu@163.com
|
|
[1] Zhang J, Huang X, Liu C X, et al. Ecological. Engineering, 2005, 25: 419. [2] Wang X, Sun T H, Li H B, et al. Ecological. Engineering, 2010, 36: 1433. [3] Ye C, Hu Z B, Kong H N, et al. Pedosphere, 2008, 18(3): 401. [4] Maria H V, Ricardo S C, Javier M V, et al. Chemosphere, 2010, 81: 651. [5] ZHANG Jian, SHAO Chang-fei, LIU Zhi-qiang, et al(张 建,邵长飞,刘志强,等). China Water & Wastewater(中国给水排水), 2004, 20(4): 1. [6] Wu F C, Cai Y R, Evans D, et al. Biogeochemistry, 2004, 71(3): 339. [7] Chen W, Westerhoff P, Leenheer J A, et al. Environmental Science Technological, 2003, 37(24): 5701. [8] Marhuenda-Egea F C, Martinez-Sabater E, Jorda J, et al. Chemosphere, 2007, 68(2): 301. [9] He X S, Xi B D, Wei Z M, et al. Chemosphere, 2011, 82(4): 541. [10] Baker A, Curry M. Water Research, 2004, 38(10): 2605. [11] Hudson N, Baker A, Wardb D, Science Total Environmental, 2008, 391(1): 149. [12] YANG Chang-ming, WANG Meng-meng, MA Rui, et al (杨长明,汪盟盟,马 锐,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2012, 32(3): 708. [13] Tang S J, Wang Z W, Wu Z C, et al. Journal of Hazardous Materials, 2010, 178: 377. [14] He X S, Xi B D, Wei Z M, et al. Journal of Hazardous Materials, 2011, 190: 293. |
[1] |
TAN Ai-ling1, WANG Si-yuan1, ZHAO Yong2, ZHOU Kun-peng1, LU Zhang-jian1. Research on Vinegar Brand Traceability Based on Three-Dimensional Fluorescence Spectra and Quaternion Principal Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2163-2169. |
[2] |
FAN Gong-duan1*, LIN Xiu-yong1,2, WANG Shu-min1,2*, LUO Jing1, XIE Zhi-gang2, LI Qiang2. Compositional Characteristics of Interstitial Water Dissolved Organic Matter in Bioretention Systems with Different Filling[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1139-1145. |
[3] |
OUYANG Heng1,2*, XIAO Jian-ren3, LIN Xiu-yong4, FAN Gong-duan4*. Compositional Characteristics of Dissolved Organic Matter in Water Treatment Systems of Water Source Heat Pump Based on Three-Dimensional Fluorescence Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1146-1152. |
[4] |
WANG Yu-tian, LIU Ting-ting*, LIU Ling-fei, YANG Zhe, CUI Yao-yao. Determination of Polycyclic Aromatic Hydrocarbons in Water Based on Three Dimensional Fluorescence Spectroscopy Combined with Wavelet Compression and APTLD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1171-1177. |
[5] |
ZHOU Yan-lei1, ZHOU Fei-fei1, JIANG Cong-cong1, SHI Xiao-yong1,2*, SU Rong-guo1. Research of Identification Method for the Oil Spills Species Based on Fluorescence Excitation-Emission Matrix and Parallel Factor Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 475-480. |
[6] |
XIE Zhi-yong1,2, XIE Li-qin1,2, JIANG Shen-hua1,2,3*, QU Wen-juan1,3, ZHANG Xiao-xia1,2, ZHANG Hua-hao1,2, HAO Shu1,2, ZHANG Liang-hui1,2, MA Hai-le1,3, SHEN Yong-gen1,4. The Comparison of Inhibition on LDL Non-Enzymatic Glycosylation and Oxidation between Ethyl Acetate Extracts of Clove and Clove Bud Oil Based on Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 518-527. |
[7] |
WANG Bi1, 2, XI Hong-bo2, ZHOU Yue-xi1, 2*, CHEN Xue-min1, FU Xiao-yong1. Effects of Different Substituents on Three Dimensional Fluorescence Properties of BTEX[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3763-3770. |
[8] |
WANG Yu-tian1, ZHANG Li-juan1, 2*, ZHAO Xu1, CHEN Yi-qiang3, PAN Zhao1, CAO Li-fang1, XU Jing1, YUAN Yuan-yuan1, NIU Kai-zeng1, ZHANG Ya-ji1. Study on the Three-Dimensional Fluorescence Spectra of Oil Mixture and Its Composition Based on Tri-PLS Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3771-3775. |
[9] |
HUANG Zhen-rong1, CHENG Cheng2, TANG Jiu-kai2, Lü Wei-ming1, TAO Ting-ting1, WANG Xiao-jiong1, WU Jing2*. Characterization of Organic Matters in the Effluent of Dyeing and Printing Wastewater Treatment Plants with Fluorescence Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3118-3121. |
[10] |
LI Shuai-dong1, 2, 3, JIANG Quan-liang3, LI Ye3, WU Ya-lin3, JIANG Jun-wu3, HUANG Tao1, 2, 3, YANG Hao3, HUANG Chang-chun1, 2, 3*. Spectroscopic Characteristics and Sources of Dissolved Organic Matter from Soils around Dianchi Lake, Kunming[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(05): 1448-1454. |
[11] |
YU Shao-hui1, XIAO Xue2, XU Ge1. Data Compression of Time Series Three-Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1163-1167. |
[12] |
LI Shuai-dong1, 2, 3, ZHANG Ming-li3, YANG Hao3, LIU Da-qing3, YU Li-yan3, HUANG Tao1, 2, 3*, HUANG Chang-chun1, 2, 3*. Spectroscopic Characteristics of Dissolved Organic Matter from Top Soils on SongHuaba Reservoir in Kunmimg[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1183-1188. |
[13] |
LI Lei1, 2, LI Zhong-pei1, 2*, LIU Ming1, 2, MA Xiao-yan1, 2, TANG Xiao-xue1, 2 . Characterizing Dissolved Organic Matter (DOM) in Wastewater from Scale Pig Farms Using Three-Dimensional Excitation-Emission Matrices (3DEEM) [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(02): 577-583. |
[14] |
ZHANG Li-guo1,3, CHEN Zhi-kun1, 2, WANG Li1*, CAO Li-fang1, YAN Bing1, WANG Yu-tian1 . Study on Refined Oil Identification and Measurement Based on the Extension Neural Network Pattern Recognition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(09): 2901-2905. |
[15] |
YAO Yi-liang1,3, ZHAO Wei-hong1,2*, MIAO Hui1 . Studied on Colored Dissolved Organic Matter of Spring in North Yellow Sea with Three-Dimensional Fluorescence Spectroscopy Combined with Parallel Factor Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(08): 2532-2537. |
|
|
|
|