光谱学与光谱分析 |
|
|
|
|
|
Measurement of Nonuniform Temperature and Concentration Distribution by Absorption Spectroscopy Based on Least-Square Fitting |
SONG Jun-ling, HONG Yan-ji, WANG Guang-yu, PAN Hu |
State Key Laboratory of Laser Propulsion & Application, Academy of Equipment, Beijing 101416, China |
|
|
Abstract The measurement of nonuniform temperature and concentration distributions was investigated based on tunable diode laser absorption spectroscopy technology. Through direct scanning multiple absorption lines of H2O, two zones for temperature and concentration distribution were achieved by solving nonlinear equations by least-square fitting from numerical and experimental studies. The numerical results show that the calculated temperature and concentration have relative errors of 8.3% and 7.6% compared to the model, respectively. The calculating accuracy can be improved by increasing the number of absorption lines and reduction in unknown numbers. Compared with the thermocouple readings, the high and low temperatures have relative errors of 13.8% and 3.5% respectively. The numerical results are in agreement with the experimental results.
|
Received: 2012-12-16
Accepted: 2013-03-18
|
|
Corresponding Authors:
SONG Jun-ling
E-mail: songjl@mail.ustc.edu.cn
|
|
[1] Brown M S. 50th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, 2012, AIAA-2012-0555. [2] Lindstrom C D, Jackson K R, Williams S. AIAA Journal, 2009, 47(10): 2368. [3] SONG Jun-ling, HONG Yan-ji, WANG Guang-yu(宋俊玲,洪延姬,王广宇). High Power Laser and Particle Beams(强激光与粒子束), 2012, 24(9): 2073. [4] SONG Jun-ling, HONG Yan-ji, WANG Guang-yu, et al(宋俊玲,洪延姬,王广宇, 等). Acta Physica Sinica(物理学报), 2012, 61(24): 240702. [5] Sanders S T, Wang J, Jeffries J B, et al. Applied Optics, 2001, 40(24): 4404. [6] Liu X, Jeffries J B,Hanson R K. AIAA Journal, 2007, 45(2): 411. [7] LOU Nan-zheng, LI Ning, WENG Chun-sheng(娄南征,李 宁,翁春生). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2012, 32(5): 1329. [8] Yu X, Li F, Chen L, et al. Acta Mechanica Sinica, 2010, 26(1): 147. [9] Rothman L S, Gordon I E, Barbe A, et al. Journal of Quantitative Spectroscopy & Radiative Transfer, 2009, 110: 533. [10] Gamache R R, Kennedy S, Hawkins R, et al. Journal of Molecular Structure, 2000, 517-518: 407. [11] Zhou X, Liu X, Jeffries J B, et al. Measurement Science and Technology, 2003, 14: 1459 [12] Shaddix C R. Proceedings of the 33<sup>rd</sup> National Heat Transfer Conference, 1999. |
[1] |
DU Bao-lu, LI Meng, GUO Jin-jia*, ZHANG Zhi-hao, YE Wang-quan, ZHENG Rong-er. The Experimental Research on In-Situ Detection for Dissolved CO2 in
Seawater Based on Tunable Diode Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1264-1269. |
[2] |
JIANG Yan1, 2, MENG He1, ZHAO Yi-rong1, WANG Xian-xu1, WANG Sui1, XUE En-yu3, WANG Shao-dong1*. Rapid Analysis of Main Quality Parameters in Forage Soybean by Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 919-923. |
[3] |
CHEN Feng-xia1, YANG Tian-wei2, LI Jie-qing1, LIU Hong-gao3, FAN Mao-pan1*, WANG Yuan-zhong4*. Identification of Boletus Species Based on Discriminant Analysis of Partial Least Squares and Random Forest Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 549-554. |
[4] |
ZHANG Xu1, BAI Xue-bing1, WANG Xue-pei2, LI Xin-wu2, LI Zhi-gang3, ZHANG Xiao-shuan2, 4*. Prediction Model of TVB-N Concentration in Mutton Based on Near Infrared Characteristic Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3377-3384. |
[5] |
MA Li1, 2, FAN Xin-li1, 2, ZHANG Shuo1, 2, WANG Wei-feng1, 2, WEI Gao-ming1, 2. Research on CH4 Gas Detection and Temperature Correction Based on TDLAS Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3632-3638. |
[6] |
WANG Si-yuan1, ZHANG Bao-jun1, WANG Hao1, GOU Si-yu2, LI Yu1, LI Xin-yu1, TAN Ai-ling1, JIANG Tian-jiu2, BI Wei-hong1*. Concentration Monitoring of Paralytic Shellfish Poison Producing Algae Based on Three Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3480-3485. |
[7] |
WAN Shun-kuan1, 2, LÜ Bo1, ZHANG Hong-ming1*, HE Liang1, FU Jia1, JI Hua-jian3, WANG Fu-di1, BIN Bin1, LI Yi-chao1, 2. Quick Measurement Method of Condensation Point of Diesel Based on Temperature-Compensation Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3111-3116. |
[8] |
WANG Guo-shui1, GUO Ao2, LIU Xiao-nan1, FENG Lei1, CHANG Peng-hao1, ZHANG Li-ming1, LIU Long1, YANG Xiao-tao1*. Simulation and Influencing Factors Analysis of Gas Detection System Based on TDLAS Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3262-3268. |
[9] |
DENG Shi-yu1,2, LIU Cheng-zhi1,4*, TAN Yong3*, LIU De-long1, JIANG Chun-xu3, KANG Zhe1, LI Zhen-wei1, FAN Cun-bo1,4, ZHU Cheng-wei1, ZHANG Nan1, CHEN Long1,2, NIU Bing-li1,2, LÜ Zhong3. Research on Spectral Measurement Technology and Surface Material Analysis of Space Target[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3299-3306. |
[10] |
LIU Hong-mei, SHEN Tao, ZHANG Wen-yi, SHI Xi-wen,DAI Tao, BAI Tao, XIAO Ying-hui*. Construction and Verification of a Mathematical Model for Near-Infrared Spectroscopy Analysis of Gel Consistency in Southern Indica Rice[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2432-2436. |
[11] |
FANG yao1, XIE Tian-hua2, GUO Wei1, BAI Xue-bing1, LI Xin-xing1*. On-Line Fast Detection Technology of Chilled Fresh Meat Quality Based on Hyperspectral and Multi-Parameter[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2572-2577. |
[12] |
CHEN Hao1, 2, JU Yu3, HAN Li1, CHANG Yang3. Curve Fitting of TDLAS Gas Concentration Calibration Based on Relative Error Least Square Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1580-1585. |
[13] |
ZHAO Ning-bo, QIN Kai*, ZHAO Ying-jun, YANG Yue-chao. Study on Indirect Inversion Model and Migration Ability of Chromium in Soil by Aerial Hyperspectral Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1617-1624. |
[14] |
ZHAO Si-meng1, YU Hong-wei1, GAO Guan-yong2, CHEN Ning2, WANG Bo-yan3, WANG Qiang1*, LIU Hong-zhi1*. Rapid Determination of Protein Components and Their Subunits in Peanut Based on Near Infrared Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 912-917. |
[15] |
CHEN Yu1, WEI Yong-ming1, WANG Qin-jun1,2*, LI Lin3, LEI Shao-hua4, LU Chun-yan5. Effects of Different Spectral Resolutions on Modeling Soil Components[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 865-870. |
|
|
|
|