|
|
|
|
|
|
Identification and Restoration of Pseudo-Hydrolyzed Animal Protein of Lacteus Camelus Based on iPLS Model of Near-Infrared Measurement Spectrum of 6 mm Detection Plate |
YUAN Ke-yan 1, WANG Rong2, WANG Xiang-xiang2, XUE Li-ping2, YU Li2* |
1. Huhhot City Inspection and Testing Center,Huhhot 010018,China
2. School of Environment and Energy Engineering, Anhui Jianzhu University,Hefei 230601,China
|
|
|
Abstract Camel milk has gradually become a health care dairy product trusted by consumers because of its high nutrition and unique health care effects. However, due to the small output of camel milk and its high market value, this provides a profitable operating space for the hybridization of camel milk. With the further strengthening of the state’s crackdown on the illegal addition of melamine in dairy products, inferior hydrolyzed animal protein has gradually become a new favorite for counterfeiting in dairy products due to its high protein content, and low price and strong concealment of illegal addition. Preventing and cracking down on fake and inferior hydrolyzed animal protein in camel milk has become a huge challenge faced by consumers and practitioners in the camel milk industry. How to detect fake and low-cost animal hydrolyzed protein in camel milk has become an urgent problem to be developed. With the rapid development of near-infrared spectral analysis technology in the past ten years, near-infrared spectral analysis technology has gradually become widely used in many fields such as petrochemical, food, agriculture, medicine, etc. widely used. In this paper, the near-infrared spectrometer with a 6 mm sample dish was used to measure the animal hydrolyzed protein of camel milk ginseng with different contents to obtain the original spectral matrix. The original spectra were preprocessed by order derivative+SNV, SG+SNV and other methods, and the 10 principal component regression models of the global spectrum were used for evaluation. By adjusting the calculation scale of principal components, the optimal calculation scale of principal components is determined to be 10. By adjusting the number of interval divisions and using the R2 and RMSECV values of the corresponding model as evaluation criteria, the optimal number of interval divisions is finally determined to be 30. Through experiments and calculations, the principal component score of 6 was obtained in the range of 7 887.87~7 590.87 cm-1, the correlation coefficient was 0.945 1, and the RMSECV value was 0.200 1, was the best prediction model for camel milk adulterated hydrolyzed animal protein. After internal interactive verification, the modified model can well predict the situation of adulterated and hydrolyzed animal protein in recovered camel milk in this system, which can provide technical reference for research in related fields.
|
Received: 2021-08-03
Accepted: 2022-03-22
|
|
Corresponding Authors:
YU Li
E-mail: ronger@ahjzu.edu.cn
|
|
[1] Bouhaddaou I S, Chabi R R, Errachid I F,et al. The Scientific World Journal, 2019, 2019: 2517293.
[2] RONG Han, GAN Lu-jing, WANG Lei(荣 菡,甘露菁,王 磊). China Condiment(中国调味品), 2019, 44(12): 144.
[3] FAN Rui, SUN Xiao-kai, YANG Chen, et al(范 睿, 孙晓凯, 杨 晨, 等). Food Industry(食品工业), 2017, 38(16): 253.
[4] WEI Yu-juan, LI Lin, YANG Xiao-ya, et al(魏玉娟,李 琳,杨笑亚,等). China Dairy Industry(中国乳品工业), 2016, 44(10):48.
[5] Chen H, Tan C, Lin Z, et al. Spectrochim Acta A, 2017, 173: 832.
[6] ZHANG Hang, LIU Guo-hai, JIANG Hui, et al(张 航,刘国海,江 辉,等). Progress in Laser and Optoelectronics(激光与光电子学进展), 2017,(2): 314.
[7] Frimani P, De Luca S, Bucci R, et al. Food Control, 2019, 100: 292.
[8] Tejerina David, Contador Rebeca, Ortiz Alberto. Food Chemistry, 2021, 356: 129733.
[9] Chen Hui, Tan Chao, Lin Zan, et al. Computers in Biology and Medicine, 2013, 43(7): 865.
|
[1] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[2] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[3] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[4] |
LIU Xin-peng1, SUN Xiang-hong2, QIN Yu-hua1*, ZHANG Min1, GONG Hui-li3. Research on t-SNE Similarity Measurement Method Based on Wasserstein Divergence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3806-3812. |
[5] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[6] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[7] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[8] |
ZHANG Shu-fang1, LEI Lei2, LEI Shun-xin2, TAN Xue-cai1, LIU Shao-gang1, YAN Jun1*. Traceability of Geographical Origin of Jasmine Based on Near
Infrared Diffuse Reflectance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3389-3395. |
[9] |
YANG Qun1, 2, LING Qi-han1, WEI Yong1, NING Qiang1, 2, KONG Fa-ming1, ZHOU Yi-fan1, 2, ZHANG Hai-lin1, WANG Jie1, 2*. Non-Destructive Monitoring Model of Functional Nitrogen Content in
Citrus Leaves Based on Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3396-3403. |
[10] |
HUANG Meng-qiang1, KUANG Wen-jian2, 3*, LIU Xiang1, HE Liang4. Quantitative Analysis of Cotton/Polyester/Wool Blended Fiber Content by Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3565-3570. |
[11] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[12] |
KANG Ming-yue1, 3, WANG Cheng1, SUN Hong-yan3, LI Zuo-lin2, LUO Bin1*. Research on Internal Quality Detection Method of Cherry Tomatoes Based on Improved WOA-LSSVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3541-3550. |
[13] |
HUANG Hua1, LIU Ya2, KUERBANGULI·Dulikun1, ZENG Fan-lin1, MAYIRAN·Maimaiti1, AWAGULI·Maimaiti1, MAIDINUERHAN·Aizezi1, GUO Jun-xian3*. Ensemble Learning Model Incorporating Fractional Differential and
PIMP-RF Algorithm to Predict Soluble Solids Content of Apples
During Maturing Period[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3059-3066. |
[14] |
CHEN Jia-wei1, 2, ZHOU De-qiang1, 2*, CUI Chen-hao3, REN Zhi-jun1, ZUO Wen-juan1. Prediction Model of Farinograph Characteristics of Wheat Flour Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3089-3097. |
[15] |
GUO Ge1, 3, 4, ZHANG Meng-ling3, 4, GONG Zhi-jie3, 4, ZHANG Shi-zhuang3, 4, WANG Xiao-yu2, 5, 6*, ZHOU Zhong-hua1*, YANG Yu2, 5, 6, XIE Guang-hui3, 4. Construction of Biomass Ash Content Model Based on Near-Infrared
Spectroscopy and Complex Sample Set Partitioning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3143-3149. |
|
|
|
|