光谱学与光谱分析 |
|
|
|
|
|
Application Study of the Thermal Infrared Emissivity Spectra in the Estimation of Salt Content of Saline Soil |
XIA Jun1,2, TASHPOLAT·Tiyip1,2*, MAMAT·Sawut1,2, ZHANG Fei1,2, HAN Gui-hong1,2 |
1. College of Resources and Environment Sciences,Xinjiang University,Urumqi 830046,China2. Key Laboratory of Oasis Ecology under Ministry of Education,Xinjiang University,Urumqi 830046,China |
|
|
Abstract Studying of soil salinization is of great significance for agricultural production in arid area oasis, thermal infrared remote sensing technology provides a new technology and method in this field. Authors used Fourier transform infrared spectrometer to measure the oasis saline soil in field, employed iterative spectrally smooth temperature/emissivity separation algorithm(ISSTES) to separate temperature and emissivity, and acquired the thermal infrared emissivity data of the saline soil. Through researching the emissivity spectral feature of saline soil, and concluded that soil emissivity will reduce with the increasing of salt content from 8 to 13 μm, so emissivity spectra is more sensitive to salt factor from 8 to 9.5 μm. Then, analyzed the correlation between original emissivity spectra and its first derivative, second derivative and normalized ratio with salt content, the result showed that they have a negative correlation relationship between soil emissivity and salt content, and the correlation between emissivity first derivative and salt content is highest, reach to 0.724 2, the corresponding bands are from 8.370 745~8.390 880 μm. Finally, established the quadratic function regression model, its determination coefficient is 0.741 4, and root mean square error is 0.235 5, the result explained that the approach of using thermal infrared emissivity to retrieve the salt content of saline soil is feasible.
|
Received: 2012-05-07
Accepted: 2012-08-25
|
|
Corresponding Authors:
TASHPOLAT·Tiyip
E-mail: tash@xju.edu.cn
|
|
[1] LU Chun-xia,YU Yun-jiang,GUAN You-zhi(鲁春霞,于云江,关有志). Journal of Natural Disasters(自然灾害学报),2001,10(1):99. [2] Khan N M,Sato Y. Geoinform,2001,1(3):63. [3] Abd EI Kadar Douaoui,Herve Nibolas,Christian Walter. Geoderma,2006,134:217. [4] ZHANG Fei,TASHPOLAT·Tiyip,DING Jian-li,et al(张 飞,塔西甫拉提·特依拜,丁建丽,等). Journal of Infrared and Millimeter Waves(红外与毫米波学报),2010,29(3):190. [5] ZHANG Fang,XIONG Hei-gang,LUAN Fu-ming,et al(张 芳,熊黑钢,栾福明,等). Journal of Infrared and Millimeter Waves(红外与毫米波学报),2011,30(1):55. [6] ZHANG Fei,TASHPOLAT·Tiyip,KUNG Hsiangte,et al. Agricultural Science and Technology,2011,12(7):1046,1074. [7] Kodikara J,Rajeev P,Rhoden N J. Canadian Geotechnical Journal,2011,48(8):1295. [8] Minacapilli M,Cammalleri C,Ciraolo G,et al. Soil Science Society of America Journal,2012,76(1):92. [9] CHENG Jie,LIU Qin-huo,LI Xiao-wen,et al(程 洁,柳钦火,李小文,等). Journal of Infrared and Millimeter Waves(红外与毫米波学报),2008,27(1):21. [10] XU Zhou,ZHAO Hui-jie(徐 州,赵慧洁). Acta Optical Sinica(光学学报),2009,29(2):394. [11] XIAO Qing,LIU Qin-huo,LI Xiao-wen,et al(肖 青,柳钦火,李小文,等). Journal of Infrared and Millimeter Waves(红外与毫米波学报),2003,22(5):373. [12] HUANG Qi-ting,SHI Zhou,PAN Gui-ying,et al(黄启厅,史 舟,潘桂颖,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2011,31(8):2195. [13] Christoph C B. First JPL Workshop on Remote Sensing of Land Surface Emissivity, JPL, 5,May,1997. 6. [14] Carl S,Craig J M. Image Exploitation and Target Recognition,Algorithms for Multispectral,Hyspectral,and Ultraspectral Imagery Ⅶ,2001,4381:134. [15] ZHANG Xia,ZHANG Bing,ZHENG Lan-fen,et al(张 霞,张 兵,郑兰芬,等). Journal of Infrared and Millimeter Waves(红外与毫米波学报),2000,19(5):361. [16] Borel C C. Proceeding of the International Geoscience and Remote Sensing Symposium,1998,1:546. [17] CHENG Jie,XIAO Qing,LI Xiao-wen,et al(程 洁,肖 青,李小文,等). Journal of Remote Sensing(遥感学报),2008,12(5):699. [18] Ingram P M,Muse A H. IEEE Transactions on Geoscience and Remote Sensing,2001,39(10):2158. [19] HE Ting,WANG Jing,CHENG Ye,et al(何 挺,王 静,程 烨,等). Acta Pedologica Sinica(土壤学报),2006,43(6):1027.
|
[1] |
WANG Dong, LIU Shan-jun*, MAO Ya-chun, WANG Yue, LI Tian-zi. A Method Based on Thermal Infrared Spectrum for Analysis of SiO2 Content in Anshan-Type Iron[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2101-2106. |
[2] |
TIAN Yuan-sheng1, ZHANG Yue1, SUN Wen-yi1, 2*, MU Xing-min1, 2, GAO Peng1, 2, ZHAO Guang-ju1, 2. Spectral Characteristics of Biological Soil Crusts under the Different Types in the Water-Wind Erosion Crisscross Region on the Loess Plateau[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2215-2220. |
[3] |
CAI Liang-hong1, 2, DING Jian-li1, 2*. Prediction for Soil Water Content Based on Variable Preferred and Extreme Learning Machine Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2209-2214. |
[4] |
FAN Hua1, YAO Gao-yang2, LIU Wei3, XING Zi-hui4, SHI Jin-ming5, GAO Bai1*, CHEN Yang6. Experimental Study on the Treatment of Mercury Contained Soil by Thermal Analytical Low Temperature Plasma Based on Cold Atomic Absorption Spectrophotometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2279-2283. |
[5] |
ZHAO Shuai-yang1, HU Xing-bang1, JING Xin2, JIANG Si-jia1, HE Li-qin1, MA Ai-nai1, YAN Lei1*. Analyses of Land Surface Emissivity Characteristics in Mid-Infrared Bands[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1393-1399. |
[6] |
WANG Xiao-ping1,2, ZHANG Fei1,2,3*, YANG Sheng-tian4,AYINUER·Yushanjiang1,2,CHEN Yun5. Rapid Diagnosis of Surface Water Salt Content (WSC) in Ebinur Lake Watershed Based on 3-D Fluorescence Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1468-1475. |
[7] |
FAN Hua1, ZHANG Chun-yan2, LI Yan-mei1, YI Ling1, SHEN Wei1, ZAN Jin-jing1, GAO Bai1*. Distribution Characteristics and Pollution Evaluation of Soil Uranium in a Tailings Reservoir Based on ICP-OES Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1563-1566. |
[8] |
WANG Shi-fang, LUO Na, HAN Ping*. Application of Energy-Dispersive X-Ray Fluorescence Spectrometry to the Determination of As, Zn,Pb and Cr in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1648-1654. |
[9] |
YU Wu1, JIA Xiao-lin2, CHEN Song-chao2, ZHOU Lian-qing1, 2*, SHI Zhou2. Feasibility Analysis of Rapid Estimation of Soil Erosion Factor Using Vis-NIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1076-1081. |
[10] |
ZHANG Guang-na1, LIN Xiang-jie2, LI Yun-mei3, XU Shu-jian1, ZHANG Yu-lan4*. Fourier Transform Infrared Spectroscopy Analysis of Humic Acids from Brown and Cinnamon Soils under Robinia pseudoacacia Forest[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1298-1302. |
[11] |
YANG Yi-fan1, CAI Hong-xing1, WANG Zhao-xuan1, LI Yan2, LI Shuang1*. Inversion Research on the Spectrum Emissivity Based on Slowing Varying Properties of Emissivity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 702-707. |
[12] |
CHENG Hang1,2, WAN Yuan3, CHEN Yi-yun2,4,5*, WAN Qi-jin1,6,7*, SHI Tie-zhu8, SHEN Rui-li9, GUO Kai2, HU Jia-meng2. Study on the Characteristics and Mechanism of Visible and Near Infrared Reflectance Spectra of Soil Heavy Metals[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 771-778. |
[13] |
CHEN Si-ming1, 3, 4, ZOU Shuang-quan1, 4*, MAO Yan-ling2, 4, LIANG Wen-xian1, 4, DING Hui1, 4. Inversion of Soil Organic Matter Content in Wetland Using Multispectral Data Based on Soil Spectral Reconstruction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 912-917. |
[14] |
CONG Lin-xiao1,2, HUANG Min1*, LIU Xiang-lei1, QI Yun-song1. Retrieval of Soil Organic Carbon Based on Bi-Continuum Removal Combined with Orthogonal Partial Least Squares[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 941-947. |
[15] |
GU Yan-hong1,2,3, ZHAO Nan-jing1,3*, MA Ming-jun1,3, MENG De-shuo1,3, JIA Yao1,3, FANG Li1,3, LIU Jian-guo1,3, LIU Wen-qing1,3. Mapping Analysis of Heavy Metal Elements in Polluted Soils Using Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 982-989. |
|
|
|
|