|
|
|
|
|
|
Research Progress of Spectroscopy Detection Technologies for Waterborne Pathogens |
HU Yu-xia1, CHEN Jie1, SHAO Hui1, YAN Pu1, XU Heng1, SUN Long1, XIAO Xiao1, XIU Lei3, FENG Chun2GAN Ting-ting2, ZHAO Nan-jing2* |
1. School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China
2. Key Laboratory of Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
3. School of Advanced Manufacturing Engineering, Hefei University, Hefei 230601, China
|
|
|
Abstract Waterborne pathogenic bacteria contamination can cause various diseases, seriously endangering human health and public health security. Waterborne pathogen detection is important to human health care, water safety and disease diagnosis. Conventional waterborne pathogen detection techniques, such as artificial culture, molecular biology and immunology, are accurate and effective, but sample pre-treatment is cumbersome and time-consuming, not conducive to real-time online detection of pathogenic bacteria. Spectral detection technology to non-invasive access to pathogenic bacteria emission, scattering or absorption spectral characteristics, able to determine the nature, structure and content of pathogenic bacteria and other information. Due to the advantages of easy operation, rapidity, portability, non-destructiveness and ease of real-time monitoring, this technique has many application prospects in environmental monitoring and bioanalysis. The article introduces the existing waterborne pathogen detection techniques and their advantages and disadvantages, points out the necessity of rapid and efficient detection of pathogenic bacteria; discusses the principles of spectroscopic detection techniques and data analysis methods, focusing on the working principles and research progress of UV/Vis spectroscopy, fluorescence spectroscopy, infrared spectroscopy, Raman spectroscopy and terahertz spectroscopy in the detection of waterborne pathogenic bacteria; finally summarizes the advantages and disadvantages of each technique. The challenges and strategies for the practical application of spectroscopic techniques in detecting pathogenic bacteria are presented to provide a reference for further development of rapid detection of waterborne pathogens based on spectroscopic techniques.
|
Received: 2021-08-01
Accepted: 2021-11-14
|
|
Corresponding Authors:
ZHAO Nan-jing
E-mail: njzhao@aiofm.ac.cn
|
|
[1] Fleming-Dutra K E,Hersh A L, Shapiro D J, et al. JAMA, 2016, 315(17): 1864.
[2] Butler H J, Ashton L, Bird B, et al. Nat. Protoc., 2016, 11: 664.
[3] Krause A, Guestrin C. Comput., 2009, 42: 38.
[4] Richardson S D. Anal. Chem., 2004, 76: 3337.
[5] Stokes D L, Griffin G D, Vo-Dinh T. Fresenius J. Anal. Chem., 2001, 369(3-4): 295.
[6] Nenonen N P, Hannoun C, Larsson C U, et al. Applied and Environmental Microbiology, 2012, 78(6): 1846.
[7] Bridge J W, Oliver D M, Chadwick D, et al. Bulletin of the World Health Organisation, 2010, 88: 873.
[8] Au K K, Alpert S M, Pernitsky D J. Particle and Natural Organic Matter Removal in Drinking Water. in: Operational Control of Coagulation and Filtration Processes, 2014.
[9] EPA, Standard Methods 9131, Total Coliform: Multiple Tube Fermentation Technique, https://www.epa.gov/sites/production/files/2015-12/documents/9131.pdf.
[10] Grasso G M, Sammarco M L, Ripabelli G, et al. Microbios, 2000, 103(405): 119.
[11] National Standard of the People’s Republic of China(中华人民共和国国家标准). GB/T 5750.12—2006 Standard Examination Methods for Drinking Water-Microbiological Parameters(生活饮用水标准检验方法微生物指标).
[12] YU Hui,MA Li-li,MAO Guan-nan,et al(余 辉, 马丽丽, 毛冠男, 等). Microbiology China(微生物学通报), 2012, 39(8): 1171.
[13] Fakruddin M. Bangladesh Res. Pub. J.,2011, 5: 425.
[14] Ge S, Peng Y, Qiu S, et al. Water Res., 2014, 55C: 95.
[15] LIU Jing-mei, ZHANG Ling, ZHAO Jun, et al(刘京梅, 张 凌, 赵 君, 等). Journal of Environmental Hygiene(环境卫生学杂志), 2006, 33(2): 117.
[16] Shinde S B, Fernandes C B, Patravale V B. Journal of Controlled Substances, 2012, 159: 164.
[17] XU Shi-zhuo(徐诗卓). Journal of Clinical Medical Literature (Electronic Edition)(临床医药文献电子杂志), 2020, 426(5): 37.
[18] Glindkamp A, Riechers D, Rehbock C, et al. Adv. Biochem. Eng. Biotechnol., 2009, 115: 145.
[19] Hassan M, Gonzalez E, Hitchins V, et al. Sensors and Actuators B: Chemical, 2016, 231: 646.
[20] Leblanc L, Dufour E. FEMS Microbiol. Lett., 2002, 211(2): 147.
[21] WANG Cheng, SHI Ji-yi, ZHENG Gang, et al(王 成, 史继毅, 郑 刚, 等). Optical Instruments(光学仪器), 2020, 42(2): 26.
[22] LI Mao-gang, YAN Chun-hua, DU Yao, et al(李茂刚, 闫春华, 杜 瑶,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(7): 2099.
[23] DENG Yong, LU Qiang, LUO Qing-ming(邓 勇, 鲁 强, 骆清铭). Acta Optica Sinica(光学学报), 2006, 26(8): 1214.
[24] Burgess C, Thomas O, Cerda V. UV-Visible Spectrophotometry of Water and Wastewater. Elsevier, Amsterdam, 2007.
[25] Hu Yuxia, Zhao Nanjing, Gan Tingting, et al. Journal of Spectroscopy, 2017,2017: 4039048.
[26] Loske A M, Tello E M, Vargas S, et al. Arch. Microbiol., 2014, 196: 557.
[27] DONG Zi-yan(董自艳). Drug Standards of China(中国药品标准), 2014, 15(2): 120.
[28] Edlich A, Magdanz V, Rasch D, et al. Biotechnol. Prog.,2010, 26: 1259.
[29] Lakowicz J R. Principles of Fluorescence Spectroscopy. NewYork: Springer, 2006.
[30] Kessler R W. Prozessanalytik: Strategien und Fallbeispiele aus Derindustriellen Praxis. Weinheim: Wiley, 2006.
[31] Giana H E, Silveira L, Zangaro R A, et al. Journal of Fluorescence, 2003, 13(6): 489.
[32] Schreier S, Doungchawee G, Triampo D, et al. Acta Tropica, 2012, 122: 119.
[33] Khan M M T, Pyle B H, Camper A K. Applied and Environmental Microbiology, 2010, 76: 5088.
[34] LI Su-wen, HUO Man-peng, CHENG Ru-xuan, et al(李素文, 霍满鹏, 成汝萱, 等). Acta Biophysica Sinica(生物物理学报), 1987, 3(4): 420.
[35] Alvarez-Ordonez A, Mouwen D J M, Lopez M, et al. Journal of Microbiological Methods, 2011, 84: 369.
[36] Vargas C A, Wilhelm A A, Williams J, et al. Applied and Environmental Microbiology, 2009, 75: 6431.
[37] Erukhimovitch V, Huleihil M, Huleihel M. Journal of Spectroscopy, 2013, 2013: 317458.
[38] LI Zhao-jie, ZHANG Yu-chun, LIU Yu-min, et al(李兆杰, 张玉春, 刘玉敏, 等). Periodical of Ocean University of China(中国海洋大学学报), 2018, 48(1): 57.
[39] GUO Zhen-dong, ZHAO Si-yan, ZHANG Yi, et al(郭振东, 赵思言, 张 毅, 等). Military Medical Sciences(军事医学), 2015, (4): 311.
[40] Escoriza M F, VanBriesen J M, Stewart S, et al. Journal of Microbiological Methods, 2006, 66: 63.
[41] Silge A, Schumacher W, Rösch P, et al. Syst. Appl. Microbiol.,2014, 37: 360.
[42] Grun J, Manka C K, Nikitin S. Anal. Chem., 2007, 79(14): 5489.
[43] Jarvis R M, Goodacre R. FEMS Microbiology Letters, 2004, 232(2): 127.
[44] Fan C, Riley L K, Purdy G A, et al. Journal of Food Science, 2010, 75: 302.
[45] Grow A E, Wood L L, Claycomb J L, et al. Journal of Microbiological Methods, 2003, 53: 221.
[46] Mantsch H H, Naumann D. J. Mol. Struct., 2010, 964: 1.
[47] YU Wen-jing, YANG Xiang, LIU Yu, et al(余闻静, 杨 翔, 刘 羽, 等). Journal of Third Military Medical University(第三军医大学学报), 2017, 39(13): 1315.
[48] Mazhorova A, Markov A, Ng A, et al. Opt. Express, 2012, 20(5): 5344.
[49] Yang X, Wei D, Yan S, et al. Journal of Biophotonics, 2016, 9(10): 1050.
[50] Habash M, Johns R. Journal of Microbiological Methods, 2009, 79: 128.
[51] Ghosh K K, Burns L D, Cocker E D, et al. Nature Methods, 2011, 8: 871.
|
[1] |
DONG Xiang-hui, YANG Fang-wei, YU Hang, YAO Wei-rong, XIE Yun-fei*. Papid Detection of Zilpaterol Residues in Pork by Surface-Enhanced
Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2843-2847. |
[2] |
CHEN Miao, HOU Ming-yu, CUI Shun-li, LI Zhen, MU Guo-jun, LIU Ying-ru, LI Xiu-kun, LIU Li-feng*. Construction of Near-Infrared Model of Peanut Sugar Content in
Different Seed Coat Colors[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2896-2902. |
[3] |
ZHANG Zhen-qing1, 2, 3, DONG Li-juan2*, HUANG Yu4, CHEN Xing-hai4, HUANG Wei5, SUN Yong6. Identification of True and Counterfeit Banknotes Based on Hyperspectral Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2903-2912. |
[4] |
ZHANG Jiu-ming1,KUANG En-jun1,CHI Feng-qin1*,LIU Yi-dan4,ZHOU Bao-ku1,XIA Xiao-yu3,WANG Xiao-jun1,SUN Lei1,CHANG Ben-chao1,WEI Dan2. Fluorescence Spectrum Characteristics of DOC in Black Soil Under
Organic Substitution of Chemical Nitrogen Fertilizer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2919-2923. |
[5] |
YU Xin, ZHOU Wei*, XIE Dong-cai, XIAO Feng, LI Xin-yu. The Study of Digital Baseline Estimation in CVAFS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2392-2396. |
[6] |
WU Yan-han, CHEN Quan-li*, LI Jun-qi, ZHAO An-di, LI Xuan, BAO Pei-jin. Study on the Spectral Characteristics of Filled Amazonite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2499-2505. |
[7] |
YI Jun1, YANG Guang2, PAN Hong-wei2*, ZHAO Li-li1, LEI Hong-jun2, TONG Wen-bin2, SHI Li-li2. PARAFAC and FRI Preferred 3D Fluorescence Extraction Time of
Dissolved Organic Matter[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2444-2451. |
[8] |
YAN Shu-fa, ZHU Yuan-chen, TAO Lei, ZHANG Yong-gang, HU Kai, REN Fu-chen. Spectral Oil Condition Monitoring Data Selection Method for Mechanical Transmission Based on Information Entropy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2637-2641. |
[9] |
GUO Jin-ke, LU Ji-long, SI Jun-shi, ZHAO Wei, LIU Yang, WANG Tian-xin, LAI Ya-wen*. Study on Heavy Metal in Soil by Portable X-Ray Fluorescence
Spectrometry Based on Matrix Effect Correction and
Correspondence Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2309-2314. |
[10] |
YUAN Li1, XIE Bei-bei2, CUI Yong-qiang2, ZHANG Xiao-dan2, JIAO Hui-hui2. Research on Oil Spill Status Recognition Based on LIF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2018-2024. |
[11] |
ZHANG Meng-jun1, LIU Li-li1*, YANG Xie-li2, GUO Jing-fang1, WANG Hao-yang1. Multispectral Analysis of Interaction Between Catechins and Egg Yolk Immunoglobulin and the Change of Bacteriostasis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2297-2303. |
[12] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[13] |
ZHU Xiang1, 2*, YUAN Chao-sheng1, CHENG Xue-rui1, LI Tao1, ZHOU Song1, ZHANG Xin1, DONG Xing-bang1, LIANG Yong-fu2, WANG Zheng2. Study on Performances of Transmitting Pressure and Measuring Pressure of [C4mim][BF4] by Using Spectroscopic Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1674-1678. |
[14] |
WANG Yi-ya1, WANG Yi-min1*, GAO Xin-hua2. The Evaluation of Literature and Its Metrological Statistics of X-Ray Fluorescence Spectrometry Analysis in China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1329-1338. |
[15] |
YAN Peng-cheng1, 2, ZHANG Chao-yin2*, SUN Quan-sheng2, SHANG Song-hang2, YIN Ni-ni1, ZHANG Xiao-fei2. LIF Technology and ELM Algorithm Power Transformer Fault Diagnosis Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1459-1464. |
|
|
|
|