|
|
|
|
|
|
Determination of Trace Oxygen in High Purity Gold by Using Inert Gas Fusion Infrared Spectroscopy |
TANG Yi-chuan1, CUI Yan-jie1, ZHANG Jian-ying1, HE Sheng2, ZHOU Tao1*, WU Bing1 |
1. National Institute of Metrology, China, Beijing 100029, China
2. Beijing Research Institute of Uranium Geology, Beijing 100029, China
|
|
|
Abstract Trace oxygen has a noticeable influence on the purity assessment of high purity gold when the total elemental impurities deduction method was used to calculate the purity. However, the previous elemental impurities deduction method did not calculate the non-metallic elements such as oxygen, making the purity assessment not persuasive. The inert gas fusion infrared absorption method was established to measure the content of trace oxygen in high purity gold reference materials. The secondary ion mass spectrometry was used to compare the methods to ensure the reliability of the measurement results. The measurement parameters of the ONH analyzer were optimized, and the optimal working conditions were confirmed as follows: purge time 35 s, analysis delay 75 s, exhaust cycle 2, exhaust time 25 s, exhaust power 4 500 W, analysis power 4 000 W. Tin was selected as the flux, and the ratio of gold to tin was determined to be 5∶3 by oxygen release experiment. The secondary measurement of the gold sample showed that the residual oxygen was consistent with the blank, indicating that the addition of tin particles could promote the release of oxygen in gold, thus solving the problem of incomplete release of oxygen in gold. The tiny particles were deoxidized repeatedly to reduce the blank, and a stable blank was obtained. The limit of quantitation of the method reached 0.1 mg·kg-1. The calibration coefficient is 1.012, and the recoveries of oxygen are between 95% and 105%, which verifies the reliability of the measurement method and ensures the traceability of the measurement results. In the secondary ion mass spectrometer, Cs+ is used as the primary ion source, the aperture is 400 μm, the ion beam intensity is 3 nA, the beam spot size is about 20 μm, the grid scanning size is 10 μm, and the secondary ion aperture is 400 μm. After sputtering and ionization, 16O- and 18O- ion currents were collected. SRM685 high purity gold reference material was used as the measurement standard. The oxygen content was calculated through the cyclic measurement of the standard and sample by comparing the ion current intensities between standard and sample. The results of the two methods were (1.1±0.3) and (0.9±0.3) mg·kg-1 respectively. The uncertainty evaluation showed that the primary sources were the certified reference materials and measurement repeatability. The two results were consistent within the uncertainty range. Finally, the trace oxygen content in the high-purity gold reference material was (1.0±0.4) mg·kg-1. The accurate determination of trace oxygen in high purity gold was realized by the two established measurement methods, which provide effective methods for the determination of trace oxygen and the development of high purity gold and other high purity metal certified reference materials.
|
Received: 2021-01-13
Accepted: 2021-02-04
|
|
Corresponding Authors:
ZHOU Tao
E-mail: zhoutao@nim.ac.cn
|
|
[1] ZHONG Hua(钟 华). Metallurgical Analysis(冶金分析),2014,34(12): 7.
[2] LIN Fei,WANG Peng,SUN Xiao-fei, et al(蔺 菲,王 蓬,孙晓飞,等). Powder Metallurgy Technology(粉末冶金技术),2018,36(5): 382.
[3] HU Shao-cheng,GE Cheng,MA Hong-quan,et al(胡少成,葛 程,马红权,等). Metallurgical Analysis(冶金分析),2014,34(4): 37.
[4] CAO Fei-fei,ZHOU Tao,ZHANG Dong-xiang(曹飞飞,周 涛,张东翔). Metallurgical Analysis(冶金分析),2015,35(5): 32.
[5] Zhou T,Richter S,Matschat R,et al. Accreditation and Quality Assurance,2013,18(4): 341.
[6] SONG Zhong-xun(宋忠训). Metallurgical Analysis(冶金分析),1986,6(4): 54.
[7] Kiyoteru Kobayashi,Hiroaki Watanabe,Kazuyoshi Maekawa,et al. Micron: The International Research and Review Journal for Microscopy,2010,41(5): 412.
[8] Tsubasa Nakagawa,Isao Sakaguchi,Hajime Haneda,et al. Japanese Journal of Applied Physics,2007,46(6a): 3391.
[9] Shigeru Suzuki,Takamichi Yamamoto,Kozo Shinoda,et al. Surface and Interface Analysis,2008,40(3/4): 311.
[10] Karolewski M A,Cavell R G. Applied Surface Science,2002,193(1): 11.
[11] Oleszek G,Enicks D. Integrated Circuit Design and Technology, 2004 ICICDT 04 International Conference on,2004. 253.
|
[1] |
WANG Xue-pei1, 2, ZHANG Lu-wei1, 2, BAI Xue-bing3, MO Xian-bin1, ZHANG Xiao-shuan1, 2*. Infrared Spectral Characterization of Ultraviolet Ozone Treatment on Substrate Surface for Flexible Electronics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1867-1873. |
[2] |
LI Jin-hua1, 2, ZHANG Min-juan1, 2, WANG Zhi-bin1, 2, LI Shi-zhong1, 2*. The Effect of Instrument Resolution on Passive Ranging of Oxygen A Band[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1974-1978. |
[3] |
HOU Bing-ru1, LIU Peng-hui1, ZHANG Yang1, HU Yao-hua1, 2, 3*. Prediction of the Degree of Late Blight Disease Based on Optical Fiber Spectral Information of Potato Leaves[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1426-1432. |
[4] |
YI Shi-wen1, LI Jie1, 2*, WU Jing-xuan1, ZHANG Wen-hao1, ZU Peng1, LI Min1, LIN Jia-wei1. Infrared Spectral Fitting Analysis of Barium Ferrite Precursor in High Energy Ball Milling Process[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1634-1641. |
[5] |
TANG Guang-tong1, YAN Hui-bo1, WANG Chao-yang1, LIU Zhi-qiang1, LI Xin1, YAN Xiao-pei1, ZHANG Zhong-nong2, LOU Chun2*. Experimental Investigation on Hydrocarbon Diffusion Flames: Effects of Combustion Atmospheres on Flame Spectrum and Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1654-1660. |
[6] |
ZHA Ling-ling1, 2, 3, WANG Wei2*, XIE Yu1, SHAN Chang-gong2, ZENG Xiang-yu2, SUN You-wen2, YIN Hao2, HU Qi-hou2. Observation of Variations of Ambient CO2 Using Portable FTIR
Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1036-1043. |
[7] |
LIU Su-ya-la-tu, WANG Zong-li, PANG Hui-zhong, TIAN Hu-qiang, WANG Xin *, WANG Jun-lin*. Terahertz Broadband Tunable Metamaterial Absorber Based on Graphene and Vanadium Dioxide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1257-1263. |
[8] |
DENG Ya-li1, LI Mei2, WANG Ming2*, HAO Hui1*, XIA Wei1. Surface Plasmon Resonance Gas Sensor Based on Silver/Titanium Dioxide Composite Film[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 743-748. |
[9] |
TANG Qian1, 3, HUANG Ting2, 3, GONG Ting-ting1, 3, CAO Hong-yu1, 3, WANG Ai-ling2, 3, WANG Li-hao2, 3, ZHENG Xue-fang1, 2, 3*. Spectroscopic Study on the Mechanism of Photoduction of Cytochrome b5 by Ultraviolet Light[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 821-827. |
[10] |
CONG Jian-han1, LUO Yun-jing1*, QI Xiao-hua2, ZOU Ming-qiang2, KONG Chen-chen1. Sensitive Detection of Uric Acid Based on BSA Gold Nanoclusters by Fluorescence Energy Resonance Transfer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 483-489. |
[11] |
FU Juan, MO Jia-mei, YU Yi-song, ZHANG Qing-zong, CHEN Xiao-li, CHEN Pei-li, ZHANG Shao-hong, SU Qiu-cheng*. Experimental Study on the Structure Characteristics of CO2 in Gas Hydrate by Solid-State Nuclear Magnetic Resonance and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 464-469. |
[12] |
LOU Meng-han1, 2, JIN Hong-mei2, 3, 4*, LIANG Dong2, 3, ZHU Yan-yun2, 3, ZHU Ning2, 3, 4, LI Dan-yang2, 3. Fluorescence Spectra Characteristics of Dissolved Organic Matter in Mesophilic Anaerobic Digestion of Pig and Dairy Manure Slurries[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 141-146. |
[13] |
ZHANG Si-min1,2,3, WU Xiao-cheng1,2,3*, SUN Ming-chen1,2,3, HU Xiong1,3, GONG Xiao-yan1,3. Using Onion-Peeling Method to Inverse Ozone Density Based on the Stellar Occultation Technology in the Near Space Region[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 203-209. |
[14] |
PENG Jian-wen1, XIAO Chong1, SONG Qiang1, PENG Zhong-chao1, HUANG Ruo-sen1, YANG Ya-dong3, TANG Gang1, 2, 3*. Flame Retardant Mechanism Investigation of Thermoplastic Polyurethane Composite/Ammonium Polyphosphate/Aluminum Hydroxide Composites Based on Spectroscopy Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3901-3908. |
[15] |
JIANG Shuang-cheng1, FAN Dan-yang2, LIU Yue2, WANG Jia-bin3, LÜ Hai-xia2*. Modification of Ternary Layered Hydroxide and Removing for Orange Ⅱ With Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3957-3962. |
|
|
|
|