|
|
|
|
|
|
Spectral Study on Combustion Supporting Effect of Plasma Jet for Methane Combustion in Air |
ZHANG Xiao-lin1, LI Shou-zhe2*, JI Chun-jun1*, NIU Yu-long2, BAI Yang2, LIAO Hong-da2 |
1. School of Energy and Power Engineering, Dalian University of Technology,Dalian 116024, China
2. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams Ministry of Education, School of Physics, Dalian University of Technology,Dalian 116024, China |
|
|
Abstract Atmospheric pressure argon plasma jet (APAPJ) is a non-equilibrium plasma producing a large number of electrons, positive ions, excited particles and active groups, which can significantly reduce the activation energy in reactions, and the dynamic effect caused by APAPJ also imposes influence on the transportation process, thereby they both play a very important role in the process of plasma-assisted combustion. In this experiment, By OES, the intermediate radicals (OH, CH and C2) generated in the non-premixed and premixed combustions are identified. The variation of emission intensity of those radicals is measured with respect to the fuel equivalent ratio and discharge voltage, respectively. It is found that the application of the APPJ causes the overall length of flame to become short and the flame surface appears wrinkled, with the blue area of the flame root continuously enlarged, which accounts for about 1/2 of the total flame area at discharge voltage of 22 kV, indicating that the combustion becomes complete and intense. When the voltage reaches 16 kV, the spectral intensity of the free radical OH(A-X), CH(A-X) and C2(d) becomes remarkable, but when the voltage is 22 kV, the spectral intensity decreases, which is because the plasma enhances the gas flow rate in the tube, causing the combustion region to move away from the nozzle so that the less intensity is collected by fiber during the spectrum acquisition process. In addition, the combustion process of premixed gas assisted by plasma jet under different fuel equivalence radio is studied. In the case of Φ=2, it is found that the spectral intensity of OH(A-X) increases with discharge voltage, while those of CH(A-X) and C2(d) decline when the discharge voltage is large enough that the APPJ is merged into flame near the nozzle. It is found that APAPJ plays an importance role in CH4 combustion in open air due to the active radicals generated in APAPJ and the mixing effect caused by ion wind by APAPJ.
|
Received: 2020-11-21
Accepted: 2021-03-19
|
|
Corresponding Authors:
ZHANG Xiao-lin, LI Shou-zhe, JI Chun-jun
E-mail: zhxl-7878@163.com; lisz@dlut.edu.cn; chunji@dlut.edu.cn
|
|
[1] Zhang H, He L, Yu J, et al. Plasma Science and Technology, 2018, 20(2): 024001.
[2] Shin D H, Hong Y C, Uhm H S. IEEE Transactions on Plasma Science, 2006, 34(5): 2464.
[3] Huang Wentong,Li Shouzhe. IEEE Transactions on Plasma Science, 2010, 38(2):121.
[4] LONG Wu-qiang, GUO Xiao-ping, TIAN Jiang-ping(隆武强, 郭晓平, 田江平). Combustion and Flame(燃烧学). Beijing: Science Press(北京:科学出版社),2015. 154.
[5] Wu W, Fuh C A, Wang C. Combustion Science and Technology, 2015, 187(7): 999. |
[1] |
YANG Jin-chuan1, 2, AN Jing-long1, 2, LI Cong3, ZHU Wen-chao3*, HUANG Bang-dou4*, ZHANG Cheng4, 5, SHAO Tao4, 5. Study on Detecting Method of Toxic Agent Containing Phosphorus
(Simulation Agent) by Optical Emission Spectroscopy of
Atmospheric Pressure Low-Temperature Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1728-1734. |
[2] |
WANG Ling-ling1, 2, 3, WANG Bo1, 2, 3, XIONG Feng1, 2, 3, YANG Lu-cun1, 2, LI Jing-jing4, XIAO Yuan-ming1, 2, 3, ZHOU Guo-ying1, 2*. A Comparative Study of Inorganic Elements in Cultivativing Astragalus Membranaceus From Different Habitats[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1407-1412. |
[3] |
YAN Hua1, LIU Xing-hua2, DING Yong3, ZHAO Zhi1, LUO Yong-feng1, WU Yu-hong1, YAN Peng1, DONG Lu1, WANG Da-xi4. Instantaneous Emission Spectra and Mechanism Study on the Reaction of ClF3O and n-Decane[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1522-1528. |
[4] |
LI Ai-yang1, FU Liang2*, CHEN Lin3. Determination of Trace Heavy Metal Elements in Plant Essential Oils by Inductively Coupled Plasma Optical Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1162-1167. |
[5] |
HU Li-hong1, ZHANG Jin-tong1, WANG Li-yun2, ZHOU Gang3, WANG Jiang-yong1*, XU Cong-kang1*. Optimization of Working Parameters of Glow Discharge Optical Emission Spectrometry of High Barrier Aluminum Plastic Film[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 954-960. |
[6] |
ZHENG Pei-chao, LUO Yuan-jiang, WANG Jin-mei*, HU Qiang, YANG Yang, MAO Xue-feng, LAI Chun-hong, FENG Chu-hui, HE Yu-tong. Determination of Strontium in Strontium-Rich Mineral Water Using Solution Cathode Glow Discharge-Atomic Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 272-276. |
[7] |
LI Ai-yang1, FU Liang2*. Study on the Analysis Total As in Bentonite With Microwave Plasma Atomic Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3671-3675. |
[8] |
CHENG Xiao-xiao1, 2, LIU Jian-guo1, XU Liang1*, XU Han-yang1, JIN Ling1, XUE Ming3. IR Spectral Inversion of Methane Concentration and Emission Rate in Shale Gas Backflow[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3717-3721. |
[9] |
MA Hong-liang1, 2, ZHENG Jian-jie1, 3, 4, LIU Qiang1, 3*, QIAN Xian-mei1, 3, ZHU Wen-yue1, 3. A Multispectrum Fitting Program Based on Non-Linear Least-Squares Method for Line Parameters:Application to 12CH4[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3887-3891. |
[10] |
NIE Ling-mei1, ZHA Tao1, XIA Bin-biao1, ZHANG Kai1, GUAN Zhi-qiang1, ZHAO You-quan1*, YUAN Da2, CAO Xuan2, LIU Yan2. Development of a Spectral Measurement System for the Determination of the Fluorescence Efficiency of Dissolved Oxygen Membrane[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3486-3492. |
[11] |
LIU Hong-wei1,3, FU Liang2*. Analysis of Metal Impurity Elements in Li4Ti5O12 Through Microwave Plasma Atomic Emission Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3021-3025. |
[12] |
LI Zheng-kai1, CHEN Lei1*, WANG Mei-qi1, SONG Peng2, 3, YANG Kun1, ZENG Wen1. Diagnosis of Atmospheric Pressure Argon/Air Needle-Ring Dielectric Barrier Discharge Emission Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3307-3310. |
[13] |
ZHANG Bin-bin1, 2, LI Jing-bin1, 2, WANG Shi-ning1, 2, HE Peng-fei1, 2, ZHA Xiao-qin1, 2, 3. Determination of Lithium, Iron and Phosphorus in Carbon Composite Lithium Iron Phosphate by Perchloric Acid Digestion-Inductively Coupled Plasma Optical Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2703-2709. |
[14] |
SHAO Ming-jie1, 2, LIU Wen-ke1, 2*, ZHOU Cheng-bo1, 2, WANG Qi1, 2, LI Bao-shi1, 2. Effects of High Light Duration and Frequencies on Growth and Nutrient Element Contents of Hydroponic Lettuce Cultivated Under LED Red and Blue Light[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2853-2858. |
[15] |
CHEN Chuan-jie1, 2, FAN Yong-sheng3, FANG Zhong-qing1, 2, WANG Yuan-yuan1, 2, KONG Wei-bin1, 2, ZHOU Feng1, 2*, WANG Ru-gang1, 2. Research on the Electron Temperature in Nanosecond Pulsed Argon Discharges Based on the Continuum Emission[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2337-2342. |
|
|
|
|