|
|
|
|
|
|
Experimental Investigation of Spectral Emissivity of Copper-Nickel Alloy During Thermal Oxidation Process |
XU Yan-fen1, ZHANG Kai-hua1*, LIU Yan-lei1, YU Kun1, LIU Yu-fang1, 2* |
1. College of Physics, Henan Normal University, Xinxiang 453007, China
2. School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract With the development of science and technology, the requirements for the quality of copper-nickel alloy products rise rapidly in the industrial field. During smelting and processing of copper-nickel alloy, the quality of products depends on the accurate surface temperature measured by radiation thermometry.Therefore,it is particularly important to study the spectral emissivity characteristics of copper-nickel alloy. In this paper, the spectral emissivity of the copper-nickel alloy is measured by the apparatus based on a Fourier transform infrared spectrometer at four temperatures (673, 773, 873 and 973 K) over the spectral range from 2 to 22 μm. The effects of wavelength, temperature, heating time and oxidation on the spectral emissivity of copper-nickel alloy are studied. It was found that the spectral emissivity of the copper-nickel alloy increased with increasing temperature and decreased with increasing wavelength in a nitrogen environment. When copper-nickel alloy was exposed to an air environment, its spectral emissivity increased rapidly with temperature. At 673 K, a layer of tinoxide particles was formed on the surface, which prevented further oxidation of copper-nickel alloy. The spectral emissivity of oxide particles is higher than that of copper-nickel alloy, so the spectral emissivity at a short wavelength increases slightly. At 773 K, the phenomenon of copper-nickel alloy’s surface gradually turned red was observed during the experiment. It is found that Cu2O is the main component of the surface oxide, which is the reason why the spectral emissivity of the copper-nickel alloy increases rapidly. At 873 K, the type and content of oxide increase obviously, and oxide film thickness satisfies the condition of interference effect. The evolution of the interference extremum can be obviously observed in the spectral emissivity curves of copper-nickel alloy, and the interference extremum gradually moves to long-wavelength with the increasing of heating time. The oxidationresistanceof copper-nickel alloy decreases with increasing temperature. At 973 K, the oxidation degree on the surface of copper-nickel alloy is the deepest, and the peak value of oxide in the XRD pattern is the largest. Therefore, the number of interference extremum is most due to interference effect after 1 h. In conclusion, the spectral emissivity of the copper-nickel alloy is significantly influenced by wavelength, temperature and oxidation, which should be considered in the application of radiation thermometry.This study enriches the spectral emissivity of copper-nickel alloy and provides reliable data support for radiation thermometry.
|
Received: 2020-08-28
Accepted: 2021-01-14
|
|
Corresponding Authors:
ZHANG Kai-hua, LIU Yu-fang
E-mail: yf-liu@htu.edu.cn; zhangkaihua@htu.edu.cn
|
|
[1] Zhao Shunan, Li Xunfeng, Zhou Xiaoming, et al. Infrared Physical & Technology, 2016, 78(9): 214.
[2] Zhao Shunan, Li Xunfeng, Huai Xiulan, et al. International Journal of Heat and Mass Transfer, 2019, 128: 378.
[3] Wen C D. Journal of Materials Engineering & Performance, 2011, 20(2): 289.
[4] Hagqvist P, Sikström F, Christiansson A K. Measurement, 2013, 46(2): 871.
[5] de Arrieta I G, Echániz T, Olmos J M, et al. Infrared Physics & Technology, 2019, 97: 270.
[6] Nunak N, Roonprasang K, Suesut T, et al. Advanced Materials Research, 2013, 811: 380.
[7] Yu Kun, Zhang Huiyan, Liu Yufang, et al. International Journal of Heat and Mass Transfer, 2019, 129: 1066.
[8] Shi Deheng, Liu Qionglan, Zhu Zunlue, et al. Infrared Physics &Technology, 2014, 64: 119.
[9] Shi Deheng, Zou Fenghui, Zhu Zunlue, et al. Transactions of the Indian Institute of Metals, 2015, 68(4): 601.
[10] Shi Deheng, Zou Fenghui, Zhu Zunlue, et al. Heat Transfer Research, 2018, 49(15): 1445.
[11] Lanc Z, Zeljkovic M, Živkovic A, et al. Materials and Geoenvironment, 2018, 65(3): 115.
[12] Setién-Fernández I, Echániz T, González-Fernández L, et al. International Journal of Heat and Mass Transfer, 2014, 71(4): 549.
[13] Zhang Kaihua, Yu Kun, Liu Yufang, et al. International Journal of Heat and Mass Transfer, 2017, 114: 1037.
[14] Kong B, Li T, Eri Q. Applied Thermal Engineering, 2017, 113(2): 20. |
[1] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[2] |
HOU Bing-ru1, LIU Peng-hui1, ZHANG Yang1, HU Yao-hua1, 2, 3*. Prediction of the Degree of Late Blight Disease Based on Optical Fiber Spectral Information of Potato Leaves[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1426-1432. |
[3] |
ZHA Ling-ling1, 2, 3, WANG Wei2*, XIE Yu1, SHAN Chang-gong2, ZENG Xiang-yu2, SUN You-wen2, YIN Hao2, HU Qi-hou2. Observation of Variations of Ambient CO2 Using Portable FTIR
Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1036-1043. |
[4] |
LIU Su-ya-la-tu, WANG Zong-li, PANG Hui-zhong, TIAN Hu-qiang, WANG Xin *, WANG Jun-lin*. Terahertz Broadband Tunable Metamaterial Absorber Based on Graphene and Vanadium Dioxide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1257-1263. |
[5] |
DENG Ya-li1, LI Mei2, WANG Ming2*, HAO Hui1*, XIA Wei1. Surface Plasmon Resonance Gas Sensor Based on Silver/Titanium Dioxide Composite Film[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 743-748. |
[6] |
SI Shang-hua1, 2, YANG Zhe-heng1, 2, CHEN You-zhi3, SONG Li-jun1, 2, SHANG Xiao-qing1, 2, ER Chuang1, 2, LIU Chao1, 2. Thermal Evolution Characteristics and Discrimination of Reservoir Bitumen Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 783-787. |
[7] |
TANG Qian1, 3, HUANG Ting2, 3, GONG Ting-ting1, 3, CAO Hong-yu1, 3, WANG Ai-ling2, 3, WANG Li-hao2, 3, ZHENG Xue-fang1, 2, 3*. Spectroscopic Study on the Mechanism of Photoduction of Cytochrome b5 by Ultraviolet Light[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 821-827. |
[8] |
CONG Jian-han1, LUO Yun-jing1*, QI Xiao-hua2, ZOU Ming-qiang2, KONG Chen-chen1. Sensitive Detection of Uric Acid Based on BSA Gold Nanoclusters by Fluorescence Energy Resonance Transfer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 483-489. |
[9] |
GONG Zheng1, LIN Jing-jun2*, LIN Xiao-mei3*, HUANG Yu-tao1. Effect of Heating and Cooling on the Characteristic Lines of Al During Melting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 598-602. |
[10] |
FU Juan, MO Jia-mei, YU Yi-song, ZHANG Qing-zong, CHEN Xiao-li, CHEN Pei-li, ZHANG Shao-hong, SU Qiu-cheng*. Experimental Study on the Structure Characteristics of CO2 in Gas Hydrate by Solid-State Nuclear Magnetic Resonance and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 464-469. |
[11] |
SUN Hong-sheng1, 2, LIANG Xin-gang1, MA Wei-gang1, ZHANG Yu-feng3, QIU Chao2, MA Yue-gang2. Method and Device for Measuring High-Temperature Spectral Emissivity of Non-Conductive Materials Based on Laser Rotation Heating[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 310-315. |
[12] |
PENG Jian-wen1, XIAO Chong1, SONG Qiang1, PENG Zhong-chao1, HUANG Ruo-sen1, YANG Ya-dong3, TANG Gang1, 2, 3*. Flame Retardant Mechanism Investigation of Thermoplastic Polyurethane Composite/Ammonium Polyphosphate/Aluminum Hydroxide Composites Based on Spectroscopy Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3901-3908. |
[13] |
JIANG Shuang-cheng1, FAN Dan-yang2, LIU Yue2, WANG Jia-bin3, LÜ Hai-xia2*. Modification of Ternary Layered Hydroxide and Removing for Orange Ⅱ With Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3957-3962. |
[14] |
XIE Yi-hang, DAI Cai-hong*, WANG Yan-fei, WU Zhi-feng, LI Ling, HE Shu-fang. A New Method for Inflection Point Temperature Calculation of Large-Area High-Temperature Fixed-Point Blackbody Used in Spectral Irradiance Scale Realization[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3942-3948. |
[15] |
LI Xue, LIN Jing-song, GUO Yi-tong, HUO Wei-gang*, WANG Yu-xin, XIA Yang. Studies on the Electrical and Spectrum Characteristics in Atmospheric Dielectric Barrier Discharge in Helium-Argon Mixture[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3602-3606. |
|
|
|
|