|
|
|
|
|
|
Spectroscopic Characteristics and Coloring Mechanism of Brown Tourmaline Under Heating Treatment |
YUE Su-wei1, 2, YAN Xiao-xu1, 2*, LIN Jia-qi1, WANG Pei-lian1, 2, LIU Jun-feng3 |
1. School of Jewelry, Guangzhou City Institute of Technology, Guangzhou 510800, China
2. Institute of Jewelry, Guangzhou City Institute of Technology, Guangzhou 510800, China
3. Chow Tai Fook Jewellery & Gold (Shenzhen) Co., Ltd., Shenzhen 518081, China |
|
|
Abstract Tourmaline group belongs to the trigonal system and contains a series of Boro-Aluminosilicate minerals. It can be subdivided into lithium tourmaline, magnesium tourmaline, and sodium-manganese tourmaline. Gem grade tourmalines show various colors, due to the occurrence of different trace elements and color centers. Brown tourmalines are selected to be modified into attractive colors by 3~4 hours(h) heating treatment under oxidizing or reducing environment. We obtained such results of 250~600 ℃ step heating-treatment experiments in brown tourmalines: (1) the color of samples changed successively from brown, greenish-brown to brownish-green in 250~350 ℃; (2) the brown hue continuous faded as the transparency improved in 450~500 ℃ which indicated the optimum heating temperature; (3) the fracture in all samples enlarged when heated above 600 ℃; (4) after heating treatment, the dichroism of samples showed green and brown on the direction parallel to c-section, while brown perpendicular to c-section. The color modification mechanism of brown tourmalines before and after heating treatment were investigated in this study by mid-near infrared absorption spectroscopy (IR), X-ray fluorescence spectroscopy (XRF), and ultraviolet-visible spectrophotometry (UV-Vis). The result of XRF indicated that all tourmaline samples belonged to the lithium tourmaline group which were rich in Mn and Fe. The mid-IR absorption peaks in natural brown samples were located at 3 800~3 400, 1 350~1 250, 1 200~800 cm-1 and below 800 cm-1, while the near-IR located at 4 720, 4 597, 4 537, 4 441, 4 343, 4 203, and 4 170 cm-1. The absorption peaks between 3 800~3 400 cm-1 attributed to bending and stretching vibration of M—OH (M can be replaced by Al, Mg, Fe, Mn etc.), which decreased after heating treatment and vanished at 600 ℃. The water loss in heating treatment caused the weakening of bending vibration of structural water. The UV-Vis-spectra in natural brown samples showed 715, 540, and 417 nm absorption bend on the direction parallel to c-section, caused by Fe2+ d—d (5T2g→5Eg), Fe2+→Fe3+ inter valence charge transfer (IVCT), and Fe2+→Ti4+ (IVCT) respectively. In this contribution, all samples contain high Mn content. The presence around 417 nm absorption is possibly influenced by the superposition of 413/414 nm absorption, which attributed to spin-allowed transitions of Mn2+in d—d orbits (6A1g→4A1g, 4TEg). After heating treatment, Mn3+ was reduced into Mn2+, which led to an augment in 414 nm absorption. Simultaneously, the absorption of 520 nm vanished as the content of Mn3+ decreased. The presence of 520 nm absorption might be a reason to form asymmetrical absorption in 540 nm band. After heating treatment above 450 ℃, the absorption band of 715 and 417 nm remained unchanged, while 540 nm vanished. The vanishment of 540 nm absorption band could be caused by partial Fe3+→Fe2+ charge transference in heating treatment, which led to the reduction of Fe2+→Fe3+ (IVCT) in the direction parallel to the c-section. The vanishment of 540 nm absorption band induced transmittance increase for the green-light region, which could be the reason of green color existence after heating treatment.
|
Received: 2020-07-19
Accepted: 2020-11-20
|
|
Corresponding Authors:
YAN Xiao-xu
E-mail: yanxiaoxu@gcu.edu.cn
|
|
[1] Castaneda C, Eeckhout S G, Da Costa G M, et al. Physics and Chemistry of Minerals, 2006, 33(3): 207.
[2] Cano N F, Gundu Rao T K, Ayala-Arenas J S, et al. Journal of Luminescence, 2018, 205: 324.
[3] Pezzotta F, Laurs B M. Elements, 2011, 7(5): 333.
[4] Shigley J E, Cook B C, Laurs B M, et al. Gems and Gemology, 2001, 37(4): 260.
[5] Ayuso R A, Brown C E. Canadian Mineralogist, 1984, 22(5): 327.
[6] WANG Jin-jun, TAO Xiao-feng, WANG Wu-jun(王进军, 陶晓风, 王武军). Acta Petrologica et Mineralogica (岩石矿物学杂志), 2005, 24(4): 319.
[7] Maneewong A, Seong B S, Shin E J, et al. Journal of the Korean Physical Society, 2016, 68(1): 83.
[8] Liu X, Feng X, Fan J, et al. Chinese Optics Letters, 2011, 9(8): 90.
[9] Thongnopkun P, Naowabut P. Journal of Applied Spectroscopy, 2018, 85(4): 616.
[10] Phichaikamjornwut B, Pongkrapan S, Intarasiri S, et al. Vibrational Spectroscopy, 2019, 103: 1.
[11] Laurs B M, Simmons W B S, Rossman G R, et al. Gems & Gemology, 2007, 43(4): 314.
[12] Laurs B M, Zwaan J C, William C B, et al. Gems & Gemology, 2008, 44(1): 4.
[13] Ahn Y, Seo J, Park J. Vibrational Spectroscopy, 2013, 65(2013): 165.
[14] da Silva S F, Moura M A, Queiroz H de A, et al. Journal of Geosciences (Czech Republic), 2018, 63(2018): 155.
[15] Faye G H, Manning P G, Gosselin J R, et al. Canadian Mineralogist, 1974, 12(6):370.
[16] Da Fonseca-Zang W A, Zang J W, Hofmeister W. Journal of the Brazilian Chemical Society, 2008, 19(6): 1186.
[17] Rossman G R, Mattson S M. American Mineralogist, 1986, 71(3): 599. |
[1] |
LI Shu-jie1, LIU Jie1, DENG Zi-ang1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Study of Germinated Rice Seeds by FTIR Spectroscopy Combined With Curve Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1832-1840. |
[2] |
ZHANG Yan-ru1, 2, SHAO Peng-shuai1*. Study on the Effects of Planting Years of Vegetable Greenhouse on the
Cucumber Qualties Using Mid-IR Spectroscopoy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1816-1821. |
[3] |
WANG Xue-pei1, 2, ZHANG Lu-wei1, 2, BAI Xue-bing3, MO Xian-bin1, ZHANG Xiao-shuan1, 2*. Infrared Spectral Characterization of Ultraviolet Ozone Treatment on Substrate Surface for Flexible Electronics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1867-1873. |
[4] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[5] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[6] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[7] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[8] |
XIE Yu-yu1, 2, 3, HOU Xue-ling1, CHEN Zhi-hui2, AISA Haji Akber1, 3*. Density Functional Theory Studies on Structure and Spectra of Salidroside Molecule[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1786-1791. |
[9] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[10] |
PENG Yan-fang1, WANG Jun1, WU Zhi-sheng2*, LIU Xiao-na3, QIAO Yan-jiang2*. NIR Band Assignment of Tanshinone ⅡA and Cryptotanshinone by
2D-COS Technology and Model Application Tanshinone Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1781-1785. |
[11] |
TIAN Xue1, CHE Qian1, YAN Wei-min1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Discrimination of Millet Varieties and Producing Areas Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1841-1847. |
[12] |
LUO Heng, Andy Hsitien Shen*. Based on Color Calculation and In-Situ Element Analyze to Study the Color Origin of Purple Chalcedony[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1891-1898. |
[13] |
WANG Yi-ya1, WANG Yi-min1*, GAO Xin-hua2. The Evaluation of Literature and Its Metrological Statistics of X-Ray Fluorescence Spectrometry Analysis in China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1329-1338. |
[14] |
HU Bin1, 2, FU Hao1, WANG Wen-bin1, ZHANG Bing1, 2, TANG Fan3*, MA Shan-wei1, 2, LU Qiang1, 2*. Research on Deep Sorting Approach Based on Infrared Spectroscopy for High-Value Utilization of Municipal Solid Waste[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1353-1360. |
[15] |
YAN Ling-tong, LI Li, SUN He-yang, XU Qing, FENG Song-lin*. Spectrometric Investigation of Structure Hydroxyl in Traditional Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1361-1365. |
|
|
|
|