|
|
|
|
|
|
Inversion Based on High Spectrum and NSGA2-ELM Algorithm for the Nitrogen Content of Japonica Rice Leaves |
FENG Shuai1, CAO Ying-li1,2*, XU Tong-yu1,2, YU Feng-hua1,2, CHEN Chun-ling1,2, ZHAO Dong-xue1, JIN Yan1 |
1. College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110161, China
2. Liaoning Agricultural Information Technology Center, Shenyang Agricultural University, Shenyang 110161, China |
|
|
Abstract In order to provide an efficient, rapid and non-destructive Inversion method for the nitrogen content of japonica rice leaves, based on the japonica rice plot experiment, using high spectrum technology and laboratory chemistry experiments to obtain the effective data for three growth periods of japonica rice in the tillering stage, joining stage and heading stage. A total of 280 sets of leaf high spectrum data and corresponding rice leaf nitrogen content data were obtained to analyze the spectral characteristics of japonica rice leaves with different nitrogen treatment levels. The random frog algorithm (Random_frog) is combined with the iteratively retaining informative variables algorithm (IRIV) to screen the feature bands, and any two spectral bands are randomly combined to construct the difference vegetation index DSI (Ri, Rj), ratio vegetation index. RSI (Ri, Rj) and normalized vegetation index NDSI (Ri, Rj), respectively, combine the superior feature band combination and vegetation index as model inputs. Therefore, BP neural network, support vector machine (SVR) and non-dominated elite strategy genetic algorithm optimization limit learning machine (NSGA2-ELM) japonica rice leaf nitrogen content Inversion model were constructed, and the model was verified and analyzed. The results showed that with the increasing level of nitrogen fertilizer treatment, the reflectivity of the japonica rice leaves in the near-infrared range gradually increased, while the reflectance decreased gradually in the visible range. A total of 8 characteristic bands were obtained by combining Random_frog and IRIV. Among them, there are 7 visible light bands, which are 414.2, 430.9, 439.6, 447.9, 682.7, 685.4 and 686.3 nm, respectively. Only one of the near-infrared bands is 999.1 nm. This method effectively eliminates interference information and greatly reduces the collinearity between the bands. At the same time, it can be analyzed from the three vegetation index (DSI (Ri, Rj), RSI (Ri, Rj), NDSI (Ri, Rj)) and the determination coefficient of the nitrogen content of the japonica rice leaves. DSI (R648.1, R738.1), RSI (R532.8, R677.3) and NDSI (R654.8, R532.9) have the best correlation with leaf nitrogen content, R2 are 0.811 4, 0.829 7 and 0.816 9, respectively. In the comparative analysis of the input parameters with different input parameters, the model Inversion with the feature band combination as the model input is slightly better than the vegetation index combination, R2 is greater than 0.7, and the RMSE is less than 0.57. In the comparative analysis between the Inversion models, the estimation effect of the NSGA2-ELMInversion model proposed in this paper is significantly better than the BP neural network model and the SVR model. The training set determination coefficient R2 is 0.817 2, and the root means square error RMSE is 0.355 5. The set R2 is 0.849 7 and the RMSE is 0.301 1. According to the results of this study, the Random_frog-IRIV screening characteristic band method combined with NSGA2-ELM modeling method has a significant advantage in rapidly detecting the nitrogen content of japonica rice leaves. The research results can provide a theoretical reference for field precision fertilization of japonica rice.
|
Received: 2019-09-17
Accepted: 2019-12-20
|
|
Corresponding Authors:
CAO Ying-li
E-mail: caoyingli@syau.edu.cn
|
|
[1] SONG Li-juan, YE Wan-jun, ZHENG Yan-yan, et al(宋丽娟, 叶万军, 郑妍妍, 等). China Rice(中国稻米), 2017,(6): 22.
[2] YANG Fu-qin, FENG Hai-kuan, LI Zhen-hai, et al(杨福芹, 冯海宽, 李振海, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2017,(9): 143.
[3] LI Lan-tao, REN Tao, WAND Shan-qin, et al(李岚涛, 任 涛, 汪善勤, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2017,(3): 226.
[4] HE Ru-yan, QIAO Xiao-jun, JIANG Jin-bao, et al(何汝艳, 乔小军, 蒋金豹, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2015,(2): 141.
[5] BAI Li-min, LI Fen-ling, CHANG Qing-rui, et al(白丽敏, 李粉玲, 常庆瑞, 等). Journal of Plant Nutrition and Fertilizers(植物营养与肥料学报), 2018, 24(5): 52.
[6] LIU Chang-hua, FANG Zheng, CHEN Zhi-chao, et al(刘昌华, 方 征, 陈志超, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2018, 34(19): 170.
[7] WANG Shu-wen, ZHAO Yue, WANG Li-feng, et al(王树文, 赵 越, 王丽凤, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2016, 32(20): 187.
[8] LIU Ming-bo, TANG Yan-lin, LI Xiao-li, et al(刘明博, 唐延林, 李晓利, 等). Infrared and Laser Engineering(红外与激光工程), 2014, 43(4): 1265.
[9] Tian Y C, Gu K J, Chu X, et al. Plant and Soil, 2014, 376(1-2): 193.
[10] Lin D, Wei G, Jian Y. Optics & Laser Technology, 2018, 107: 372.
[11] FANG Mei-hong, LIU Xiang-nan(方美红, 刘湘南). Journal of Applied Sciences(应用科学学报), 2010, 28(4): 387.
[12] Yun Y H, Wang W T, Tan M L, et al. Analytica Chimica Acta, 2014, 807: 36. |
[1] |
ZHENG Yi1, 2, 3, WANG Yao1, 2, LIU Yan1, 2*. Study on Classification and Recognition of Mountain Meadow Vegetation Based on Seasonal Characteristics of Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1939-1947. |
[2] |
WANG Jin1, 2, CHEN Shu-tao1, 2*, DING Si-cheng1, 2, YAO Xue-wen1, 2, ZHANG Miao-miao1, 2, HU Zheng-hua2. Relationships Between the Leaf Respiration of Soybean and Vegetation
Indexes and Leaf Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1607-1613. |
[3] |
FU Yan-hua1, LIU Jing2*, MAO Ya-chun2, CAO Wang2, HUANG Jia-qi2, ZHAO Zhan-guo3. Experimental Study on Quantitative Inversion Model of Heavy Metals in Soda Saline-Alkali Soil Based on RBF Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1595-1600. |
[4] |
JI Tong1, 2, WANG Bo1, 2, YANG Jun-ying1, 2, LI Qiang1, 2, HE Guo-xing1, 2, PAN Dong-rong3, LIU Xiao-ni1, 2*. Spectral Characteristic Analysis and Spectral Identification of Desert Plants in Yanchi, Ningxia[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 678-685. |
[5] |
MAO Ya-chun1, WEN Jian1*, FU Yan-hua2, CAO Wang1, ZHAO Zhan-guo3, DING Rui-bo1. Quantitative Inversion Model Based on the Visible and Near-Infrared Spectrum for Skarn-Type Iron Ore[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 68-73. |
[6] |
DU Meng-meng1, Ali Roshanianfard2, LIU Ying-chao3. Inversion of Wheat Tiller Density Based on Visible-Band Images of Drone[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3828-3836. |
[7] |
CHEN Mei-chen, YU Hai-ye, LI Xiao-kai, WANG Hong-jian, LIU Shuang, KONG Li-juan, ZHANG Lei, DANG Jing-min, SUI Yuan-yuan*. Response Analysis of Hyperspectral Characteristics of Maize Seedling Leaves Under Different Light and Temperature Environment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3545-3551. |
[8] |
SHENG Hui1, CHI Hai-xu1, XU Ming-ming1*, LIU Shan-wei1, WAN Jian-hua1, WANG Jin-jin2. Inland Water Chemical Oxygen Demand Estimation Based on Improved SVR for Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3565-3571. |
[9] |
JIANG Jing1, 2, ZHAO Zi-wei1, 2, CAI Chang1, 2, ZHANG Jin-song3, CHENG Zhi-qing1, 2*. Hyperspectral Estimation of Tea Leaves Water Content Under the Influence of Dust Retention[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3532-3537. |
[10] |
LUO De-fang1, PENG Jie1*, FENG Chun-hui1, LIU Wei-yang1, JI Wen-jun2, WANG Nan3. Inversion of Soil Organic Matter Fraction in Southern Xinjiang by Visible-Near-Infrared and Mid-Infrared Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3069-3076. |
[11] |
LIU Wei, YU Qiang*, NIU Teng, YANG Lin-zhe, LIU Hong-jun, YAN Fei. Study on the Relationship Between Element As in Soil of Agricultural Land and Leaf Spectral Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2866-2871. |
[12] |
ZHANG Zi-han1, YAN Lei1,2, LIU Si-yuan1, FU Yu1, JIANG Kai-wen1, YANG Bin3, LIU Sui-hua4, ZHANG Fei-zhou1*. Leaf Nitrogen Concentration Retrieval Based on Polarization Reflectance Model and Random Forest Regression[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2911-2917. |
[13] |
MU Bing-yu1, ZHANG Shu-juan1, LI Ze-zhen2, WANG Kai1, LI Zi-hui1, XUE Jian-xin1*. Early Detection of Cauliflower Gray Mold Based on Near-Infrared Spectrum Feature Extraction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2543-2548. |
[14] |
LIU Yang1, 2, 4, SUN Qian1, 4, HUANG Jue2, FENG Hai-kuan1, 3, 4*, WANG Jiao-jiao1, 4, YANG Gui-jun1, 4. Estimation of Potato Above Ground Biomass Based on UAV Multispectral Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2549-2555. |
[15] |
LIU Tan1, 2, XU Tong-yu1, 2*, YU Feng-hua1, 2, YUAN Qing-yun1, 2, GUO Zhong-hui1, XU Bo1. Chlorophyll Content Estimation of Northeast Japonica Rice Based on Improved Feature Band Selection and Hybrid Integrated Modeling[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2556-2564. |
|
|
|
|