|
|
|
|
|
|
Strength Evolution Mechanism of Water-Rich Material Blending with Sodium Silicate by XRD and FTIR |
WANG Zhi-ming1, SUN Yu-ning1, 2*, WANG Yong-long1, 2, ZHANG Shuo1 |
1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454002, China
2. State and Local Joint Engineering Laboratory for Gas Drainage and Ground Control of Deep Mines, Henan Polytechnic University, Jiaozuo 454000, China |
|
|
Abstract Portland cement (PC) and calcium aluminate cement (CAC) are sorts of inorganic materials applied widely. Gel materials, with short setting time and high strengths, can be prepared by blending PC and CAC. Under rich-water conditions (water-cement ratio>1), the PC-CAC-based rich-water materials can be obtained by adding appropriate amount of gypsum into Portland cement-calcium aluminate cement binary system. However, the long-term strength of the rich-water materials tended to decrease. To improve the strength properties of the PC-CAC-based rich-water materials, certain amount of sodium silicate was blended into the PC-CAC-gypsum ternary system. Herein, RMT-150 mechanical experimental system was applied to test the strengths of the PC-CAC-based water-rich materials with different additions of sodium silicate, thus the strength evolution properties and the impact of sodium silicate on the strength can be illuminated. Then, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were adopted to characterize the micro-structures of the corresponding materials, aiming to analyze the development of micro-morphologies and hydrated phases, further to illuminate the strength evolution mechanism of the PC-CAC-based rich-water materials. Strength test results show that the early strength of the rich-water material was low, and its long-term strength would be reduced; however, by adding the sodium silicate, the early strength of the PC-CAC-based rich-water materials can be improved, and the long-term strength retrogression can be reduced partly. When the addition of the sodium silicate was more than 3%, the long-term strength retrogression of the rich-water material could be controlled effectively. The results of SEM, XRD and FT-IR indicate that without addition of sodium silicate and hydrated for 14 days, the CAH10 and C2AH8 with hexagonal structures changed to be C3AH6 with cubic structures, and this crystal transformation caused the long-term strength attenuation of the PC-CAC based water-rich material. When the sodium silicate addition was 1%, on the 3th day for hydration, more calcium silicate hydrate (C-S-H) gel formed compared with the rich-water material without sodium silicate, which brought benefits to the increase of the early strength of the PC-CAC-based rich-water material. After 14 days of hydration, XRD presented the diffraction peaks of C2ASH8 at d=11.75 and 6.24 Å. And the diffraction intensity of C3AH6 was detected on the 28th day, and was lower than that in the material without sodium silicate, which was confirmed by the vibration bond caused by C3AH6 and appeared at 3 643 cm-1 in FT-IR. This indicates that the addition of sodium silicate can inhibit the formation of C3AH6 by promoting transformation of CAH10 and C2AH8 to C2ASH8. However, the crystal conversion could not be inhibited completely by the sodium silicate addition of 1%, thus the long-term strength still decreased. When the sodium silicate addition rose to 4%, the formation of C2ASH8 had an obvious increase, besides, C3AH6 could not be detected on the 28th day, which indicates that the crystal transformation has been inhibited completely. Therefore, the long-term strength retrogression of the rich-water material was controlled effectively.
|
Received: 2018-09-03
Accepted: 2019-01-15
|
|
Corresponding Authors:
SUN Yu-ning
E-mail: sunyn639@126.com
|
|
[1] ZHU Bo-quan, SONG Ya-nan, LI Xiang-cheng, et al(朱伯铨, 宋雅楠, 李享成, 等). Rare Metal Materials and Engineering(稀有金属材料与工程), 2015, (s1): 261.
[2] Xu L, Wu K, Rößler C, et al. Cement and Concrete Composites, 2017, 80: 298.
[3] XU Ling-lin, WANG Pei-ming, ZHANG Guo-fang, et al(徐玲琳,王培铭,张国防,等). Journal of the Chinese Ceramic Society(硅酸盐学报), 2013, 41(11): 1499.
[4] Fernández-Jiménez A, Vázquez T, Palomo A. Journal of the American Ceramic Society, 2011, 94(4): 1297.
[5] Ma C, Qin Z, Zhuang Y, et al. Soils & Foundations, 2015, 55(5): 1222.
[6] Ding J, Fu Y, Beaudoin J J. Cement & Concrete Research, 1995, 25(6): 1311.
[7] Evju C, Hansen S. Cement & Concrete Research, 2001, 31(2): 257.
[8] CHEN Yao-zhong, LÜ Xiao-ying, LIU Gen-di(陈耀忠,吕晓迎,刘根娣). Journal of Southeast University:Natural Science Edition(东南大学学报:自然科学版), 2014, 44(2): 328.
[9] Mollah M Y A, Yu W, Schennach R, et al. Cement & Concrete Research, 2000, 30(2): 267.
[10] RONG Hui, QIAN Chun-xiang, LI Long-zhi(荣 辉,钱春香,李龙志). Journal of Functional Materials(功能材料), 2013, 44(23): 3408.
[11] Latifi N, Eisazadeh A, Marto A. Environmental Earth Sciences, 2014, 72(1): 91.
[12] Wang Z, Sun Y. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/8245036. |
[1] |
LI Shu-jie1, LIU Jie1, DENG Zi-ang1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Study of Germinated Rice Seeds by FTIR Spectroscopy Combined With Curve Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1832-1840. |
[2] |
FAN Qing-jie, SONG Yan, LAI Shi-quan*, YUE Li, ZHU Ya-ming, ZHAO Xue-fei. XRD Structural Analysis of Raw Material Used as Coal-Based Needle Coke in the Coking Process[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1979-1984. |
[3] |
ZHA Ling-ling1, 2, 3, WANG Wei2*, XIE Yu1, SHAN Chang-gong2, ZENG Xiang-yu2, SUN You-wen2, YIN Hao2, HU Qi-hou2. Observation of Variations of Ambient CO2 Using Portable FTIR
Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1036-1043. |
[4] |
PAN Qiu-li1, SHAO Jin-fa1, LI Rong-wu2, CHENG Lin1*, WANG Rong1. Non-Destructive Analysis of Red and Green Porcelain in Qing Dynasty[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 732-736. |
[5] |
AIBIBAIHAN Maturzi1, XU Rong2, LI Xiao-jin1, 3*, FAN Cong-zhao3, QI Zhi-yong3, ZHU Jun3, WANG Guo-ping3, ZHAO Ya-qin3. Study on Infrared Spectrum Fingerprint of Apocynumvenetum L. in Xinjiang Based on Double Index Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 757-763. |
[6] |
LI Ying-ying1, ZHANG Zhi-qing1*, WU Xiao-hong2, Andy Hsitien Shen1*. Photoluminescence in Indonesian Fossil Resins[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 814-820. |
[7] |
AN Zhen-hua1, ZHAO Dong-yan2, YE Yan1, YANG Rui1*, WANG Yu-bo2, SHAO Jin2, ZHANG Peng2, CHEN Yan-ning2, 3, ZHOU Min2, WANG Wen-he2, WANG Zheng2, HUANG Hai-chao2, WANG Li-cheng3, ZHONG Ming-chen3, ZHEN Yan2, WAN Yong2. A Novel Aging Evaluation Method of Nylon[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 43-48. |
[8] |
JIA Ting-gui1,2, LI Xun1*, QU Guo-na1, LI Wei3, YAO Hai-fei3,4,5, LIU Ting-fang6. FTIR Characterization of Chemical Structures Characteristics of Coal Samples With Different Metamorphic Degrees[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3363-3369. |
[9] |
LI Qiong, MA Shuai-shuai, PANG Shu-feng, ZHANG Yun-hong*. Measurement on Mass Growth Factors of (NH4)2SO4, NH4NO3, and Mixed (NH4)2SO4/NH4NO3 Aerosols Under Linear RH Changing Mode[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3444-3450. |
[10] |
WU Jing-xuan, LI Jie*, LIN Jia-wei, YI Shi-wen, LI Min, SU Wen-rou. Influence Mechanism of Microwave on Barite Flotation Based on Infrared Fitting Spectrum Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3083-3091. |
[11] |
ZHANG Ying-qiang1, ZHANG Shui-qin2, WANG Li-yan1*, YUAN Liang2, LI Yan-ting2, XIONG Qi-zhong3, LIN Zhi-an2, ZHAO Bing-qiang2*. Multispectral Structural Characterization of Low-Molecular-Weight Organic Acids Modified Urea[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3129-3136. |
[12] |
ZHAO Yu-xuan1, ZENG Le-yang-zi2, LI Kai-kai1*. Identification of Different Brands Erasable Pens by Infrared Spectroscopy Combined With Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2420-2426. |
[13] |
WAN Hong-bing, LI Hai-peng, LEI Yuan-hua, XIE Peng, ZHANG Song-shan, FENG Yong-hong, LIU Xuan, WANG Huan, SUN Bao-zhong*. Effect of Degree of Doneness on Conformation of Myofibrillar Proteins by Two-Dimensional Infrared Correlation Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2082-2086. |
[14] |
WANG Yi1, 2, LI Chang-rong1, 2*, ZENG Ze-yun1, 2,XI Zuo-bing1, 2, ZHUANG Chang-ling1, 2. Study on Alumina/Cerium Oxide X-Ray Diffraction and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1841-1845. |
[15] |
ZHANG Feng1, TANG Xiao-jun1*, TONG Ang-xin1, WANG Bin1, TANG Chun-rui2, WANG Jie2. A Mid-Infrared Wavelength Selection Method Based on the Impact Value of Variables and Population Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1795-1799. |
|
|
|
|