|
|
|
|
|
|
A Novel Aptasensors Assay for Fast Detection of Ochratoxin A in Beer |
YI Shou-jun, HE Pan, OU Bao-li, ZHANG Min, XIA Xiao-dong, TANG Chun-ran, ZENG Yun-long* |
School of Materials Science and Engineering of Hunan University of Science and Technology, School of Chemistry and Chemical Engineering of Hunan University of Science and Technology, Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Xiangtan 411201, China |
|
|
Abstract In this paper, a novel highly sensitive fluorescent aptasensor was constructed and used to detect ochratoxin A based on gold nanoparticles/aptamer/amino-functioned carbon quantum dots by using self-assembly. Gold nanoparticles/aptamer/amino-functioned carbon quantum dots were prepared as following. First, thiol-modified aptamer was attached to the surface of the gold nanoparticles in pH 3.0 tartaric acid-HCl buffer to form gold nanoparticles/aptamer by assembling. Second, amino- functioned carbon quantum dots were added to the gold nanoparticles/aptamer dispersion to form gold nanoparticles/aptamer/amino-functioned carbon quantum dots under electrostatic interactions in phosphate buffer solution (pH 7.0), by removing the excessive amino-functioned carbon quantum dots with centrifugation. The fluorescence of the amino-functioned carbon quantum dots was efficiently quenched by the gold nanoparticles, which are excellent quencher for fluorescence sensing as they have very high molar extinction coefficients and broad energy bandwidth. The fluorescent intensity of the quenched system was background fluorescence (F0). When ochratoxin A was addition to the fluorescence quenched system, the specific reaction between aptamer in the nanocompostes and ochratoxin A took place, simultaneously, amino-functioned carbon quantum dots were released, and a turn on amino-functioned carbon quantum dots fluorescence signal (F) was detected. The emission intensity increase (F-F0) could be used for the quantification of the amount of ochratoxin A in samples. The influence facts on the sensor performance were investigated including the molar ratio of gold nanoparticles and Apt, pH and incubation time. The optimum conditions were gold nanoparticles∶aptamer=1∶190 in molar ratio, pH 7.0 and incubation time was 6 minutes. Under the optimum conditions, a linear fluorescence signal response to ochratoxin A concentration was over a wide ochratoxin A concentration range of 0.005~1.00 ng·mL-1. The linear regression equation is: F-F0=6.499+211.6 c(ng·mL-1), linear correlation coefficient is: r=0.995 5 with a diction limit of 3 pg·mL-1 according 3σ/k (σ: relative standard deviations, k: slope of the working curve). The recovery was between 93.3%~108.9% in real samples, and the relative standard deviation was less than 5%. The proposed method was employed to detect ochratoxin A in beer samples, the results showed that ochratoxin A was found in 6 of 13 beer samples, with a positive rate of 46.15%. The concentration of ochratoxin A was in the range of 0.008~0.63 ng·mL-1. The fluorescent apasensor method used to detect ochratoxin A has the advantages of highly sensitive, highly specific, without interference of common mycotoxins, simple, very fast, convenient for popularization and application.
|
Received: 2018-05-08
Accepted: 2018-10-10
|
|
Corresponding Authors:
ZENG Yun-long
E-mail: yunlongzeng1955@126.com
|
|
[1] Foubert A, Beloglazova N V, Rajkovic A, et al. Tr. Anal. Chem., 2016, 83: 31.
[2] Zhang N, Zhang L, Ruan Y F, et al. Biosens. Bioelectr., 2017, 94: 207.
[3] Sharma V K, McDonald T J, Sohn M, et al. Chemosphere., 2017, 188: 403.
[4] Das R, Bandyopadhyay R, Pramanik P. Mater Tod Chem., 2018, 8: 96.
[5] Sun X C, Lei Y. Tr. Anal. Chem., 2017, 89: 163.
[6] TIAN Rui-xue, WU Ling-ling, ZHAO Qing, et al(田瑞雪, 武玲玲, 赵 清, 等). New Chemical Materials(化工新型材料),2014, 42(1): 90.
[7] LI Ling-ling, NI Gang, WANG Jia-nan, et al(李玲玲, 倪 刚, 王嘉楠, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(9): 2864.
[8] Wang B, Zhu Q K, Liao D L, et al. J. Mater. Chem., 2011, 21: 4821.
[9] Babu D, Muriana P M. Toxins, 2014, 16(12): 3223.
[10] LI Nan, JIANG Tao, ZHANG Hong-yuan, et al(李 楠,江 涛,张宏元,等). Chinese Journal of Food Hygiene(中国食品卫生杂志), 2010, 22(3):272.
[11] Mary T, Carol W, Carolyn O, et al. Journal of Aoac International, 2006, 89(3): 624.
[12] Han Z, Zheng Y, Luan L, et al. J. Chromatography A, 2010, 1217(26): 4365.
[13] Jin R C, Wu G S, Li Z, et al. J. Am. Chem. Soc., 2003,125: 1643.
[14] Zhang X, Servos M R, Liu J W. J. Am. Chem. Soc.,2012, 134: 7266.
[15] Saha K, Agasti S S, Kim C Y, et al. Chem. Rev.,2012, 112: 2739. |
[1] |
WAN Xiao-ming1, 2, ZENG Wei-bin1, 2, LEI Mei1, 2, CHEN Tong-bin1, 2. Micro-Distribution of Elements and Speciation of Arsenic in the Sporangium of Pteris Vittata[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 478-482. |
[2] |
HUANG Hui1, 2, TIAN Yi2, ZHANG Meng-die1, 2, XU Tao-ran2, MU Da1*, CHEN Pei-pei2, 3*, CHU Wei-guo2, 3*. Design and Batchable Fabrication of High Performance 3D Nanostructure SERS Chips and Their Applications to Trace Mercury Ions Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3782-3790. |
[3] |
LI Meng-yao1, 2, WANG Shu-ya1, XIE Yun-feng1, LIU Yun-guo3*, ZHAI Chen1*. Detection of Protease Deterioration Factor in Tomato by Fluorescence Sensor Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3477-3482. |
[4] |
JIA Hui-jie, ZHU Ning, GAO Yuan-yuan, WANG Ya-qi, SUO Quan-ling*. Effect of Substituent Structure of Benzothiazole Probe on Recognition to Metal Ion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3594-3598. |
[5] |
WANG Nan1, ZHANG Li-fu1*, DENG Chu-bo1, PENG Ming-yuan1, 2, LU Xu-hui1, 2. Beer Freshness Detection Method Based on Spectral Analysis Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(07): 2273-2277. |
[6] |
ZHU Dan-dan1, 2, QU Peng2*, SUN Chuang2, YANG Yuan2, LIU Dao-sheng1*, SHEN Qi3, HAO Yuan-qiang2*. A Benzothiazole-Based Long-Wavelength Fluorescent Probe for Dual-Response to Viscosity and H2O2[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1775-1779. |
[7] |
MA Hong-yan,WANG Jing-yuan, ZHANG Yue-cheng*, YANG Xiao-jun, CHEN Xiao-li. Determination of Dopamine by Fluorescence Quenching-Recovery Method with Peanut Carbon Quantum Dots as Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(04): 1093-1098. |
[8] |
LIAN Jie1, REN Yi-fei2, YANG Rui-qin1*, HAO Hong-xia3. Rapid Detection System of 2,4,6-Trinitrophenol (TNP) Based on Fluorescent Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 804-808. |
[9] |
CHEN Shuo-ran, HUANG Su-qin, HAN Peng-ju*, YE Chang-qing, SONG Sa-sa, WANG Xiao-mei*. Preparation of 9,10-Diphenylanthracene Derivative and Its Detection for Cu2+ by Up/Down-Conversion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(12): 3769-3775. |
[10] |
SHI Ji-yong, LI Wen-ting, HU Xue-tao, SHI Yong-qiang, ZOU Xiao-bo*. A New Ratiometric Fluorescence Probe Based on CuNCs and CQDs and Its Application in the Detection of Hg2+[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(12): 3925-3931. |
[11] |
CHEN Shuo-ran1, ZHENG Dao-yuan1, LIU Teng1, YE Chang-qing1*, SONG Yan-lin2. Ratiometric Fluorescent Temperature Probe Based on Up/Down-Conversion Luminescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 3088-3095. |
[12] |
HU Xue-tao, SHI Ji-yong, LI Yan-xiao, SHI Yong-qiang, LI Wen-ting, ZOU Xiao-bo*. Sensitive Determination of Trypsin in Urine Using Carbon Nitride Quantum Dots and Gold Nanoclusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(09): 2901-2906. |
[13] |
LI Yuan-yi, WANG Bo, ZHANG Ying, HU Xiao-jun*, ZHANG Zhi, HU Xin-yan. Study on the Structural Properties and the Detection Performances of Thiacalix[4]arene-Based Micellar Self-Assembled Fluorescent Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(04): 1092-1096. |
[14] |
GUO Xing-jia1*, ZHANG Li-zhi1, WANG Zuo-wei1, LIU Wen-jing1, LIU Xue-hui1, LIU Qing-shi1, HAO Ai-jun2*, LI Ying3. Synthesis of Fluorescent Carbon Dots via One-Step Solid-State Method and Their Application for Determination of Adriamycin in Urea Sample[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(10): 3153-3158. |
[15] |
TANG Qing1, ZHANG Jing2, SONG Gui-xian2, XI Yun-yun2, HUANG Ying2*, TAO Zhu2, ZHOU Qing-di3, WEI Gang4*. A Fluorescent Probe Based Host-Guest Complexation Between Cucurbit[7]uril and Neutral Red for the Detection of Paraquat Herbicide in Water Sample[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1160-1164. |
|
|
|
|