|
|
|
|
|
|
Studies of the Fluorescence Properties of Methanol and Ethanol Based on the Density Functional Theory |
ZHU Cong-hai1, 3, CHEN Guo-qing1, 3*, ZHU Chun1, 2, 3, ZHAO Jin-chen1, 3, LIU Huai-bo1, 3, ZHANG Xiao-he1, 3, SONG Xin-shu1, 3 |
1. School of Science, Jiangnan University, Wuxi 214122, China
2. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
3. Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China |
|
|
Abstract The absorption and the emission spectra of methanol and ethanol, scanned by the Edinburgh FLS920P steady-instantaneous fluorescence spectrometer, are studied on this paper. Aiming at comparison on the molecular structuresof methanol and ethanol under different states, we employ the density functional theory (DFT) and the single-excitation configuration interaction (CIS) to optimizemolecular structures under the ground and excited state. The absorption and emission spectra of methanol and ethanol on the base of 6-31++G (d, p) are estimated based on the time-dependent density functional theory (TD-DFT) with the polarized continuous model (PCM), which are in agreements with the experimental results. Furthermore, we analyze the fluorescence mechanism of methanol and ethanol, and investigate the effect caused by different exchange correlation functions on the calculated spectra. The results indicate that methanol and ethanol have weak absorption in ultraviolet regionand produce Raman band and weak fluorescence peaks through UV excitation. Meanwhile, the absorption spectra of methanol and ethanol are produced by Rydberg excitation, of which the orbit jumps from σ* to π*. Our results show that the OLYP function can reproduce the experimental absorption spectrum well and the MPWK function can predict the emission energy well. There exist differences on calculations of transition energy varying from different pure functions. Our results can provide a reliable tool to study alcohols’ molecular properties.
|
Received: 2016-12-23
Accepted: 2017-05-18
|
|
Corresponding Authors:
CHEN Guo-qing
E-mail: cgq2098@163.com
|
|
[1] Benmore C J, Loh Y L. Journal of Chemical Physics, 2000, 112(13): 5877.
[2] Schnabel T, Srivastava A, Vrabec J, et al. J. Phys. Chem. B, 2007, 111(33): 9871.
[3] WU Xiao-Jing, DAI Yun, ZHANG Nan, et al(吴晓静, 代 云, 张 楠, 等). Acta Physico-Chimica Sinica(物理化学学报), 2011, 27(11): 2535.
[4] Lamanna R,Cannistraro S. Chemieal Physics,1996,213: 95.
[5] Wakisaka A,Matsuura K. Journal of Molecular Liquids,2006,129: 25.
[6] Yu Y,Lin K,Zhou X,et al. J. Phys. Chem. C,2007, 111: 8971.
[7] ZHU Tuo, CHEN Guo-qing, YU Rui-peng, et al(朱 拓, 陈国庆, 虞锐鹏, 等). Optical Technique(光学技术), 2006, 32(1): 11.
[8] CHEN Guo-qing, ZHU Tuo, YU Rui-peng, et al(陈国庆, 朱 拓, 虞锐鹏, 等). Opto-Electronic Engineering(光电工程), 2005, 32(6):31.
[9] LIU Ying, PENG Chang-de, LAN Xiu-feng, et al(刘 莹, 彭长德, 兰秀风, 等). Acta Physica Sinica(物理学报), 2005, 54(11): 5455.
[10] LIU Ya-jun(刘亚军). Progress in Chemistry(化学进展), 2012, 24(6): 951.
[11] Lynch B J, Fast P L, Harris M, Thruhlar D G. J. Phys. Chem. A, 2000, 104: 4811.
[12] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865.
[13] Sundholm D. Phys. Chem. Chem. Phys., 2003, 5: 4265.
[14] Lee C, Yang W, Parr R G. Phys. Rev. B, 1988, 37: 785.
[15] Foresman J B, Head-Gordon M, Pople J A, et al. J. Phys. Chem., 1992, 96(1): 135.
[16] Piacente G, D’ Aiuto V, Aschi M, et al. Theoretical Chemistry Accounts, 2014 , 133(5): 135.
[17] Jr J R P. Theoretical Chemistry Accounts, 2011, 128(3): 275.
[18] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09 Revision B. 01, Wallingford CT: Gaussian Inc., 2010.
[19] Feifel R, Tanaka T, Kitajima M, et al. J. Phys. Chem., 2007, 126(17): 174304, 1.
[20] WANG Yi-lei, WU Guo-shi(王溢磊, 吴国是). Acta Physico-Chimica Sinica(物理化学学报), 2007, 23(12): 1831. |
[1] |
NIE Mei-tong1,2, XU De-gang1,2*, WANG Yu-ye1,2*, TANG Long-huang1,2, HE Yi-xin1,2, LIU Hong-xiang1,2, YAO Jian-quan1,2. Investigation on Characteristics of Edible Oil Spectra with Terahertz Time-Domain Attenuated Total Reflection Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2016-2020. |
[2] |
TAN Ai-ling1, WANG Si-yuan1, ZHAO Yong2, ZHOU Kun-peng1, LU Zhang-jian1. Research on Vinegar Brand Traceability Based on Three-Dimensional Fluorescence Spectra and Quaternion Principal Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2163-2169. |
[3] |
ZHOU Meng-ran1, LAI Wen-hao1*, WANG Ya1, 2, HU Feng1, LI Da-tong1, WANG Rui1. Application of CNN in LIF Fluorescence Spectrum Image Recognition of Mine Water Inrush[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2262-2266. |
[4] |
CHEN Ji-wen1, XU Tao2, LIU Wei2, FANG Zhe1, QU Hua-yang1*, LIANG Yuan1, HU Xue-qiang1, LIU Ming-bo1. On-Line Determination of Light-Rare Earth Distribution by Energy Dispersive-X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2284-2289. |
[5] |
WU Jun, YOU Jing-lin*, WANG Yuan-yuan, WANG Jian, WANG Min, Lü Xiu-mei. Raman Spectroscopic Study of Li2B4O7 Crystal and Melt Structure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1736-1740. |
[6] |
OUYANG Ai-guo, ZHANG Yu, TANG Tian-yi, LIU Yan-de. Study on Density, Viscosity and Ethanol Content of Ethanol Diesel Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1772-1778. |
[7] |
PENG Heng, LIU Shuai, CHEN Xiang-bai*. Raman Study of Perovskite (C6H5CH2NH3)2PbBr4[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1763-1765. |
[8] |
LIU Ling1, YANG Ming-xing1, 2*, LU Ren1, Andy Shen1, HE Chong2. Study on EDXRF Method of Turquoise Composition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1910-1916. |
[9] |
YANG Fen1, 2, 3, XIE Shao-wen 1, 2, 3, WEI Chao-yang1, 2*, LIU Jin-xin1, 2, 3. Effects of Methanol Addition on Arsenic Speciation Analysis with HPLC-ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1884-1888. |
[10] |
ZHANG Li-jiao1,2, LAI Wan-chang1, XIE Bo2, 3, HUANG Jin-chu1, LI Dan1, WANG Guang-xi1, YANG Qiang1, CHEN Xiao-li1. The Effect of Filterson on the Determination of Trace Heavy Metal Cd in Light Matrix by Energy Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1917-1921. |
[11] |
TANG Zhu-rui1, 2, XI Bei-dou1, 3, 4, HE Xiao-song1, 3, TAN Wen-bing1, 3, ZHANG Hui1, 3, LI Dan1, 3, HUANG Cai-hong1, 3*. Structural Characteristics of Dissolved Organic Compounds during Swine Manure Composting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1526-1532. |
[12] |
ZHOU Meng-ran, HU Feng*, YAN Peng-cheng, LIU Dong. Laser Induced Fluorescence Spectrum Analysis of Water Inrush in Coal Mine Based on FCM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1572-1576. |
[13] |
WANG Shi-fang, LUO Na, HAN Ping*. Application of Energy-Dispersive X-Ray Fluorescence Spectrometry to the Determination of As, Zn,Pb and Cr in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1648-1654. |
[14] |
ZHANG Qiu-hui1, GUO Zhuang-zhi1, FENG Guo-ying2. The Effect of Incident Laser Power on Raman Spectra and Photoluminescence Spectra of Silicon Nanowires[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1118-1121. |
[15] |
LI Shuang-fang1,2, GUO Yu-bao1*, SUN Yan-hui2, GU Hai-yang2. Rapid Identification of Sunflower Seed Oil Quality by Three-Dimensional Synchronous Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1165-1170. |
|
|
|
|