|
|
|
|
|
|
Spectral Detection Technique of Blood Species Based on Data Driven Model |
LI Hong-xiao1, SUN Mei-xiu1, XIANG Zhi-guang2, WANG Yi3, LIN Ling3, QIN Chuan2, LI Ying-xin1* |
1. Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
2. Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
3. School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China |
|
|
Abstract This paper proposed a non-contact blood species recognition technique based on spectral detection and data driven model. A total of 649 blood samples were selected from 4 species (monkey 144, rat 203, dog 133, and human 169) as the original samples. The wavelength range of the super continuum laser source was 450~2 400 nm. The backward scattered visible spectrum (294~1 160 nm) and the forward scattered near-infrared spectra of ten different spatial sites were collected from each blood sample contained in anticoagulant tubes. Then the eleven spectra were sequentially connected into one-dimensional data as the original data of each sample. The principal component analysis was used to extract the feature information of the dataset, which retained 99.99% of the original variance information, while compressing the data amount to 1.5% of the original data volume, such to improve the computational efficiency of classification and recognition. Experiments on different numbers of training sets and verification sets showed that the recognition error rate of ten-fold cross-validation decreases with the increase of the number of samples, and the increase of sample bank size can improve the recognition accuracy. Because the data driven model is a data stream processing model based on machine learning algorithms, in which a variety of different classification algorithms can be used to realize this model. By comparing the recognition effects of six algorithms (artificial neural network, support vector machine, partial least-squares regression, multiple linear regression, random forest and Naïve Bayes), it was found that the recognition effects of different algorithms have the category differences, that is, the sort of these algorithms in terms of their correct recognition rate are different for different species. Therefore, when choosing the data driven model as a solution, in addition to considering the overall recognition rate of the algorithm, the scheme should also consider the category differences of the algorithm if there are additional requirements on the recognition effect of some certain categories.
|
Received: 2017-08-29
Accepted: 2017-12-16
|
|
Corresponding Authors:
LI Ying-xin
E-mail: yingxinli2005@126.com
|
|
[1] Jöbsis F F. Science, 1977, 198(4323): 1264.
[2] Vashist S K. Analytica Chimica Acta, 2012, 750: 16.
[3] Ding H, Lu Q, Gao H, et al. Biomedical Optics Express, 2014, 5(4): 1145.
[4] Maruo K, Yamada Y. Journal of Biomedical Optics, 2015, 20(4): 47003.
[5] Bazar G, Eles V, Kovacs Z, et al. Talanta, 2016, 155: 202.
[6] Wang L, Mizaikoff B. Analytical and Bioanalytical Chemistry, 2008, 391(5): 1641.
[7] Tanaka H, Katura T. Journal of Biomedical Optics, 2011, 16(8): 87001.
[8] LIU Ling-yun, ZHENG Guang-mei(刘凌云,郑光美). General Zoology(普通动物学). Beijing: Higher Education Press(北京: 高等教育出版社), 1997.
[9] WANG Dong-ping, SUI Li-hua, HONG Bao-qing, et al(王冬平,隋丽华,洪宝庆, 等). Chinese Journal of Comparative Medicine(中国比较医学杂志), 2007,(7): 400.
[10] DONG Quan, LONG Zhi, JI Mei-rong, et al(董 全,龙 志,稽美容, 等). Acta Zoologica Sinica(动物学报), 1991, 37(1): 64.
[11] Haykin S. Neural Networks: a Comprehensive Foundation. 2nd ed. Singapore: Pearson Education, 1999.
[12] Murphy K P. Machine Learning: a Probabilistic Perspective. Cambridge, Massachusetts: MIT Press, 2012. |
[1] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[2] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[3] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[4] |
LI Yu1, ZHANG Ke-can1, PENG Li-juan2*, ZHU Zheng-liang1, HE Liang1*. Simultaneous Detection of Glucose and Xylose in Tobacco by Using Partial Least Squares Assisted UV-Vis Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 103-110. |
[5] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[6] |
LIANG Ye-heng1, DENG Ru-ru1, 2*, LIANG Yu-jie1, LIU Yong-ming3, WU Yi4, YUAN Yu-heng5, AI Xian-jun6. Spectral Characteristics of Sediment Reflectance Under the Background of Heavy Metal Polluted Water and Analysis of Its Contribution to
Water-Leaving Reflectance[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 111-117. |
[7] |
LIU Jia1, 2, GUO Fei-fei2, YU Lei2, CUI Fei-peng2, ZHAO Ying2, HAN Bing2, SHEN Xue-jing1, 2, WANG Hai-zhou1, 2*. Quantitative Characterization of Components in Neodymium Iron Boron Permanent Magnets by Laser Induced Breakdown Spectroscopy (LIBS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 141-147. |
[8] |
XIA Ming-ming1, 2, LIU Jia3, WU Meng1, 2, FAN Jian-bo1, 2, LIU Xiao-li1, 2, CHEN Ling1, 2, MA Xin-ling1, 2, LI Zhong-pei1, 2, LIU Ming1, 2*. Three Dimensional Fluorescence Characteristics of Soluble Organic Matter From Different Straw Decomposition Products Treated With Calcium Containing Additives[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 118-124. |
[9] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[10] |
LAN Yan1,WANG Wu1,XU Wen2,CHAI Qin-qin1*,LI Yu-rong1,ZHANG Xun2. Discrimination of Planting and Tissue-Cultured Anoectochilus Roxburghii Based on SMOTE and Inception-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 158-163. |
[11] |
HE Qing-yuan1, 2, REN Yi1, 2, LIU Jing-hua1, 2, LIU Li1, 2, YANG Hao1, 2, LI Zheng-peng1, 2, ZHAN Qiu-wen1, 2*. Study on Rapid Determination of Qualities of Alfalfa Hay Based on NIRS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3753-3757. |
[12] |
SONG Yi-ming1, 2, SHEN Jian1, 2, LIU Chuan-yang1, 2, XIONG Qiu-ran1, 2, CHENG Cheng1, 2, CHAI Yi-di2, WANG Shi-feng2,WU Jing1, 2*. Fluorescence Quantum Yield and Fluorescence Lifetime of Indole, 3-Methylindole and L-Tryptophan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3758-3762. |
[13] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[14] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[15] |
YI Min-na1, 2, 3, CAO Hui-min1, 2, 3*, LI Shuang-na-si1, 2, 3, ZHANG Zhu-shan-ying1, 2, 3, ZHU Chun-nan1, 2, 3. A Novel Dual Emission Carbon Point Ratio Fluorescent Probe for Rapid Detection of Lead Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3788-3793. |
|
|
|
|