|
|
|
|
|
|
Rapid Identification of Sunflower Seed Oil Quality by Three-Dimensional Synchronous Fluorescence Spectrometry |
LI Shuang-fang1,2, GUO Yu-bao1*, SUN Yan-hui2, GU Hai-yang2 |
1. College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
2. School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000,China |
|
|
Abstract Fluorescence spectra of sunflower oil under different oxidation conditions were obtained by three-dimensional synchronous fluorescence spectrometry,and the quality indexes were collected at the same time. The parallel-factor method was used to reduce the dimension of the three-dimensional synchronous fluorescence spectrum, and the mathematical models were established by iPLS, BiPLS and SiPLS pattern recognition methods. The results show: the two-dimensional synchronous fluorescence spectra of the samples have significant differences when the wavelength difference Δλ=50 nm, which are used for mathematical modeling of initial values. The results of partial least squares modeling show that the correlation coefficients of calibration set and prediction set of iPLS, BiPLS, SiPLS are 0.908 3, 0.961 2, 0.954 5 and 0.872 3, 0.925 2, 0.852 5. It’s found that BiPLS method is test. The study provides the theoretical basis and technical support for rapid identification of sunflower oil quality, and offers a theoretical basis for other related oil rapid detection.
|
Received: 2017-02-14
Accepted: 2017-07-29
|
|
Corresponding Authors:
GUO Yu-bao
E-mail: gyb346@ahpu.edu.cn
|
|
[1] Flagella Z, Rotunno T, Tarantino E, et al. European Journal of Agronomy, 2002, 17(3): 221.
[2] Kanti V, Grande C, Stroux A, et al. Dermatology, 2014, 229(3): 230.
[3] WANG Rui-yuan(王瑞元). China Oils and Fats(中国油脂), 2016,41(3): 1.
[4] Li J, Sun X, Liu Y. Lipid Technology, 2016, 28(8): 145.
[5] JIANG Xiao-fei, YANG Ye-bo, JIN Qing-zhe, et al(蒋晓菲, 杨叶波, 金青哲, 等). China Oils and Fats(中国油脂), 2014,39(8): 47.
[6] YU Rui-xiang, ZHANG Xin, ZHANG Xiu-qin, et al(于瑞祥,张 鑫,张秀琴,等). Journal of Instrumental Analysis(分析测试学报), 2013, 32(6): 764.
[7] LI Yin,BI Cheng-lu, FENG Hua-gang, et al(李 殷,毕承路, 冯华刚, 等). Journal of Chinese Mass Spectrometry Society(质谱学报), 2012, 33(5): 308.
[8] Sergiel I, Pohl P, Biesaga M, et al. Food Chemistry, 2014, 145(7): 319.
[9] SHI Ya-xin, GE Wu-peng, WU Xiao-yong, et al(石亚新, 葛武鹏, 吴小勇, 等). Chinese Food Science(食品科学), 2016, 37(7): 276.
[10] DING Zhi-qun, WANG Jin-xia, ZHAO Hong-xia, et al(丁志群, 王金霞, 赵洪霞, 等). Acta Photonica Sinica(光子学报), 2015, 44(6): 125.
[11] Tomazzoni G, Meira M, Quintella C M, et al. Journal of the American Oil Chemists’ Society, 2014, 91(2): 215.
[12] CHEN Ming-hui, LI Hao, CHEN Rong(陈明惠, 李 昊, 陈 荣). Optical Instruments(光学仪器), 2014, 36(1): 6.
[13] Tena N, Aparicio R, García-González D L. Food Research International, 2012, 45(1): 103.
[14] SUN Xi-hua, WANG Xin,CAO Wen-ming, et al (孙禧华, 王 鑫, 曹文明, 等) . Farm Machinery(农业机械), 2013,26(18): 38.
[15] Airadorodri Guez D, Dura Nmera S I, Galeanodi Az T, et al. Journal of Food Composition & Analysis, 2011, 24(2): 257.
[16] Nemes S M, Orsat V, Vijaya Raghavan G S. Food Chemistry, 2012, 133(4): 1588.
[17] Dankowska A, Maecka M. European Journal of Lipid Science & Technology, 2010, 111(12): 1233.
[18] Mabood F, Boqué R, Folcarelli R, et al. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2016, 161: 83.
[19] Choe E, Min D B. Comprehensive Reviews in Food Science & Food Safety, 2010, 5(4): 169.
[20] Refsgaard H H, Tsai L, Stadtman E R. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(2): 611.
[21] Stedmon C A, Bro R. Limnology & Oceanography Methods, 2008, 6(11): 572.
[22] Murphy K R, Stedmon C A, Graeber D, et al. Analytical Methods, 2013, 5(23): 6557.
[23] XIAN Rui-yi, HUANG Fu-rong, LI Yuan-peng, et al(冼瑞仪, 黄富荣, 黎远鹏, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(8): 2462. |
[1] |
LI Yu1, ZHANG Ke-can1, PENG Li-juan2*, ZHU Zheng-liang1, HE Liang1*. Simultaneous Detection of Glucose and Xylose in Tobacco by Using Partial Least Squares Assisted UV-Vis Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 103-110. |
[2] |
JIA Hao1, 3, 4, ZHANG Wei-fang1, 3, LEI Jing-wei1, 3*, LI Ying-ying1, 3, YANG Chun-jing2, 3*, XIE Cai-xia1, 3, GONG Hai-yan1, 3, DING Xin-yu1, YAO Tian-yi1. Study on Infrared Fingerprint of the Classical Famous
Prescription Yiguanjian[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3202-3210. |
[3] |
LUO Dong-jie, WANG Meng, ZHANG Xiao-shuan, XIAO Xin-qing*. Vis/NIR Based Spectral Sensing for SSC of Table Grapes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2146-2152. |
[4] |
WANG Bin1, 2, ZHENG Shao-feng2, GAN Jiu-lin1, LIU Shu3, LI Wei-cai2, YANG Zhong-min1, SONG Wu-yuan4*. Plastic Reference Material (PRM) Combined With Partial Least Square (PLS) in Laser-Induced Breakdown Spectroscopy (LIBS) in the Field of Quantitative Elemental Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2124-2131. |
[5] |
CHENG Xiao-xiang1, WU Na2, LIU Wei2*, WANG Ke-qing2, LI Chen-yuan1, CHEN Kun-long1, LI Yan-xiang1*. Research on Quantitative Model of Corrosion Products of Iron Artefacts Based on Raman Spectroscopic Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2166-2173. |
[6] |
ZHANG Mei-zhi1, ZHANG Ning1, 2, QIAO Cong1, XU Huang-rong2, GAO Bo2, MENG Qing-yang2, YU Wei-xing2*. High-Efficient and Accurate Testing of Egg Freshness Based on
IPLS-XGBoost Algorithm and VIS-NIR Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1711-1718. |
[7] |
XU Wei-xin, XIA Jing-jing, WEI Yun, CHEN Yue-yao, MAO Xin-ran, MIN Shun-geng*, XIONG Yan-mei*. Rapid Determination of Oxytetracycline Hydrochloride Illegally Added in Cattle Premix by ATR-FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 842-847. |
[8] |
LI Zi-yi1, LI Rui-lan1, LI Can-lin1, WANG Ke-ru2, FAN Jiu-yu3, GU Rui1*. Identification of Tibetan Medicine Zhaxun by Infrared Spectroscopy
Combined With Chemometrics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 526-532. |
[9] |
WANG Chao1, LIU Yan1*, XIA Zhen-zhen2, WANG Qiao1, DUAN Shuo1. Fast Evaluation of Freshness in Crayfish (Prokaryophyllus clarkii) Cased on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 156-161. |
[10] |
ZHAO Jian-ming, YANG Chang-bao, HAN Li-guo*, ZHU Meng-yao. The Inversion of Muscovite Content Based on Spectral Absorption
Characteristics of Rocks[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 220-224. |
[11] |
LI Qing-bo1, BI Zhi-qi1, CUI Hou-xin2, LANG Jia-ye2, SHEN Zhong-kai2. Detection of Total Organic Carbon in Surface Water Based on UV-Vis Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3423-3427. |
[12] |
OUYANG Ai-guo, LIN Tong-zheng, HU Jun, YU Bin, LIU Yan-de. Optimization of Hardness Testing Model of High-Speed Iron Wheel by Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3109-3115. |
[13] |
YUAN Ke-yan 1, WANG Rong2, WANG Xiang-xiang2, XUE Li-ping2, YU Li2*. Identification and Restoration of Pseudo-Hydrolyzed Animal Protein of Lacteus Camelus Based on iPLS Model of Near-Infrared Measurement Spectrum of 6 mm Detection Plate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3143-3147. |
[14] |
ZHAO Zhi-lei1, 2, 3, 4,WANG Xue-mei1, 2, 3,LIU Dong-dong1, 2, 3,WANG Yan-wei1, 2, 3,GU Yu-hong5,TENG Jia-xin1,NIU Xiao-ying1, 2, 3, 4*. Quantitative Analysis of Soluble Solids and Titratable Acidity Content in Angeleno Plum by Near-Infrared Spectroscopy With BP-ANN and PLS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2836-2842. |
[15] |
ZHOU Ming-rui1, 2, QU Jiang-bei2, LI Peng1, 2*, HE Yi-liang1, 2. The “Cluster-Regression” COD Prediction Model of Distributed Rural Sewage Based on Three-Dimensional Fluorescence Spectrum and
Ultraviolet-Visible Absorption Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2113-2119. |
|
|
|
|