|
|
|
|
|
|
The Effect of Incident Laser Power on Raman Spectra and Photoluminescence Spectra of Silicon Nanowires |
ZHANG Qiu-hui1, GUO Zhuang-zhi1, FENG Guo-ying2 |
1. College of Electrical and Information Engineering, Henan University of Engineering, Zhengzhou 451191, China
2. College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China |
|
|
Abstract Silicon nanowires is one of key photoelectric materials. In this paper, silicon nanowires have been fabricated by chemical vapor deposition, the Raman spectra and photoluminescence spectra excited by 532 nm laser have been studied, first-order Raman peaks were found to red shift and broaden with the increase of incident power, photoluminescence blueshifted to shorter wavelength and another peak appeared. The experiment results were analyzed by phonon confinement effect, lattice stress, and nonuniform heating effect of laser, the relation between laser power and Raman shift simulated by Matlab, it was found that the nonuniform heating effect of laser is the main reason for Raman spectra and photoluminescence spectra change with incident power.
|
Received: 2016-11-06
Accepted: 2017-04-19
|
|
|
[1] FAN Zhi-dong, ZHOU Zi-chun, LIU Chuo, et al(范志东,周子淳,刘 绰,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2016, 36(7): 2055.
[2] PENG Yong-yi, XU Guo-jun, ZHOU Jian-fei, et al(彭勇宜,徐国钧,周剑飞,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2016, 36(6): 1656.
[3] Chen C H, Lin C H, Yang Y S, et al. J Chem. Phys. C, 2016, 120: 5783.
[4] Li Y, Liu Z H, Lu X X, et al. Nanoscale,2015,7:1601.
[5] Priolo F, Gregorkiewicz T, Galli M, et al. Nature Nanotech., 2014, 9: 19.
[6] Sajal D, Eugene J M, Ritesh A. Science, 2015, 349: 726.
[7] Wang B, Cancilla J C, Torrecilla J S, et al. Nano Lett., 2014, 14: 933.
[8] Fei R X, Yang L. Appl. Phys. Lett., 2014, 105: 083120.
[9] Khorasaninejad M, Walia J, Saini S S. Nanotech., 2012, 23: 275706.
[10] Khajehpour J, Daoud W A, Williams T, et al. J Phys. Chem. C, 2011, 115: 22131.
[11] Vladimir S, Takeshi S, Yoshiki S, et al. Appl. Phys. Lett., 2006, 89: 213113.
[12] Chen Y Q, Peng B, Wang B. J Phys. Chem. C, 2007, 111: 5855.
[13] Ghosh R, Pal A, Giri P K. J Raman Spec., 2015, 46: 624.
[14] Khorasaninejad M, Adachi M M, Walia J, et al. Phys. Status Solidi A, 2012, 210: 373.
[15] Duan Y, Kong J F, Shen W Z. J Raman Spec., 2012, 43: 756.
[16] Wang R P, Zhou G W, Liu Y l, et al. Phys. Rev. B, 2000, 61: 16827.
[17] Balkanski M, Wallis R F, Haro E. Phys. Rev. B, 1985, 28: 1928.
[18] Bernard A W, Piermarini G J. Phys. Rev. B, 1975, 12: 1172.
[19] Cerdeira F, Buchenauer C J, Fred H P, et al. Phys. Rev. B, 1972, 5: 580.
[20] Craig R S, Pierre L, Anand D, et al. J. Non-Crystalline Solids, 2005, 351: 1653.
[21] Su Z X, Sha J, Pan G W, et al. J. Phys. Chem. B, 2006, 110: 1229.
[22] Irrera A, Artoni P, Iacona F, et al. Nanotech., 2012, 23: 075204. |
[1] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[2] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[3] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[4] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[5] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[6] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[7] |
HAN Xue1, 2, LIU Hai1, 2, LIU Jia-wei3, WU Ming-kai1, 2*. Rapid Identification of Inorganic Elements in Understory Soils in
Different Regions of Guizhou Province by X-Ray
Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 225-229. |
[8] |
WANG Lan-hua1, 2, CHEN Yi-lin1*, FU Xue-hai1, JIAN Kuo3, YANG Tian-yu1, 2, ZHANG Bo1, 4, HONG Yong1, WANG Wen-feng1. Comparative Study on Maceral Composition and Raman Spectroscopy of Jet From Fushun City, Liaoning Province and Jimsar County, Xinjiang Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 292-300. |
[9] |
WANG Hong-jian1, YU Hai-ye1, GAO Shan-yun1, LI Jin-quan1, LIU Guo-hong1, YU Yue1, LI Xiao-kai1, ZHANG Lei1, ZHANG Xin1, LU Ri-feng2, SUI Yuan-yuan1*. A Model for Predicting Early Spot Disease of Maize Based on Fluorescence Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3710-3718. |
[10] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[11] |
SONG Yi-ming1, 2, SHEN Jian1, 2, LIU Chuan-yang1, 2, XIONG Qiu-ran1, 2, CHENG Cheng1, 2, CHAI Yi-di2, WANG Shi-feng2,WU Jing1, 2*. Fluorescence Quantum Yield and Fluorescence Lifetime of Indole, 3-Methylindole and L-Tryptophan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3758-3762. |
[12] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[13] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[14] |
YANG Ke-li1, 2, PENG Jiao-yu1, 2, DONG Ya-ping1, 2*, LIU Xin1, 2, LI Wu1, 3, LIU Hai-ning1, 3. Spectroscopic Characterization of Dissolved Organic Matter Isolated From Solar Pond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3775-3780. |
[15] |
LIU Hao-dong1, 2, JIANG Xi-quan1, 2, NIU Hao1, 2, LIU Yu-bo1, LI Hui2, LIU Yuan2, Wei Zhang2, LI Lu-yan1, CHEN Ting1,ZHAO Yan-jie1*,NI Jia-sheng2*. Quantitative Analysis of Ethanol Based on Laser Raman Spectroscopy Normalization Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3820-3825. |
|
|
|
|