|
|
|
|
|
|
Feature Wavelength Selection and Efficiency Analysis for Paddy Moisture Content Prediction by Near Infrared Spectroscopy |
HUANG Hua1, WU Xi-yu2, ZHU Shi-ping1* |
1. School of Engineering and Technology, Southwest University, Chongqing 400716, China
2. College of Food Science and Technology, Southwest University, Chongqing 400716, China |
|
|
Abstract In order to obtain the best feature wavelength region for predicting paddy moisture content (PMC) by near infrared spectroscopy (NIR), this research selected 364 paddy samples of “Gangyou 916” which moisture content varied from 32.66% to 2.24%, the pretreatments methods such as mean centering (Mean), standard normalized variate (SNV), Savitzky-Golay derivative (SG1) and multiplicative scatter correction (MSC) were performed, and adopted the feature wavelengths selection methods include interval method (IM), synergy interval method (SIM), moving window method (MWM) and backward interval method (BIM), then used partial least squares (PLS) and principal component regression (PCR) quantitative analysis algorithms for the PMC NIR modeling. The calculation formulas of complexity for wavelengths selection methods with IM, SIM, MWM and BIM are firstly provided in this paper. And this paper also compares and analyzes the program operating efficiency of these methods. The results show that the prediction ability of PLS is better than PCR, but the modeling efficiency of PLS is lower than PCR. The BIM is the optimum prediction model for PMC among the four wavelengths selection methods, which root mean square error of prediction (RMSEP) and correlation coefficient (Rp) in prediction set are 0.995 6 and 0.78%, respectively. The second is MWM, which RMSEP and RP are 0.994 3 and 0.89%, respectively. However, the program running efficiency of these two methods is relatively low. The average running time of BIM is 4.87 h, and average running time of MWM is 29.82 h. This work provided a reference comparison for a fast algorithm of near infrared spectroscopy prediction model in parallel computing and distributed computing.
|
Received: 2016-11-28
Accepted: 2017-04-25
|
|
Corresponding Authors:
ZHU Shi-ping
E-mail: zspswu@126.com
|
|
[1] The National Standards of the People’s Republic of China GB 1350—2009: 2009, Paddy(中华人民共和国国家标准:稻谷),2009.
[2] Horigane A K, Suzuki K, Yoshida M. Journal of Cereal Science, 2014, 60(1): 193.
[3] WANG Jiang-rong,ZHOU Jing, SHEN Na, et al(王江蓉, 周 京, 沈 娜, 等). Cereal & Feed Industry(粮食与饲料工业), 2015,(3): 5.
[4] LIU Jie, LI Xiao-yu, LI Pei-wu, et al(刘 洁, 李小昱, 李培武, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2010, 26(2): 338.
[5] Sundaram J, Kandala C V K, Butts C L, et al. Transactions of the ASABE,2010, 53(1): 183.
[6] Deng B, Yun Y, Liang Y, et al. Analyst, 2014, 139(19): 4836.
[7] Liu D, Sun D, Zeng X. Food and Bioprocess Technology, 2014, 7(2): 307.
[8] YUAN Ying,WANG Wei,CHU Xuan, et al(袁 莹, 王 伟, 褚 璇, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(1): 226.
[9] YANG Ai-xia, DING Jian-li, LI Yan-hong, et al(杨爱霞, 丁建丽, 李艳红, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(3): 691.
[10] The National Standards of the People’s Republic of China GB 5009.3—2016: 2016, Methods for Determination of Moisture Content in Food(中华人民共和国国家标准:食品中水分的测定),2016.
[11] Mehmood T, Liland K H, Snipen L, et al. Chemometrics and Intelligent Laboratory Systems, 2012, 118(16): 62.
[12] Chen Q, Zhao J, Liu M, et al. Journal of Pharmaceutical and Biomedical Analysis, 2008, 46(3): 568.
[13] TANG Xiu-ying, NIU Li-zhao, XU Yang, et al(汤修映, 牛力钊, 徐 杨, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2013, 29(11): 248.
[14] Jie D, Xie L, Fu X, et al. Journal of Food Engineering, 2013, 118(4): 387. |
[1] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[2] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[3] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[4] |
LIU Xin-peng1, SUN Xiang-hong2, QIN Yu-hua1*, ZHANG Min1, GONG Hui-li3. Research on t-SNE Similarity Measurement Method Based on Wasserstein Divergence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3806-3812. |
[5] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[6] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[7] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[8] |
ZHANG Shu-fang1, LEI Lei2, LEI Shun-xin2, TAN Xue-cai1, LIU Shao-gang1, YAN Jun1*. Traceability of Geographical Origin of Jasmine Based on Near
Infrared Diffuse Reflectance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3389-3395. |
[9] |
YANG Qun1, 2, LING Qi-han1, WEI Yong1, NING Qiang1, 2, KONG Fa-ming1, ZHOU Yi-fan1, 2, ZHANG Hai-lin1, WANG Jie1, 2*. Non-Destructive Monitoring Model of Functional Nitrogen Content in
Citrus Leaves Based on Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3396-3403. |
[10] |
HUANG Meng-qiang1, KUANG Wen-jian2, 3*, LIU Xiang1, HE Liang4. Quantitative Analysis of Cotton/Polyester/Wool Blended Fiber Content by Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3565-3570. |
[11] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[12] |
KANG Ming-yue1, 3, WANG Cheng1, SUN Hong-yan3, LI Zuo-lin2, LUO Bin1*. Research on Internal Quality Detection Method of Cherry Tomatoes Based on Improved WOA-LSSVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3541-3550. |
[13] |
HUANG Hua1, LIU Ya2, KUERBANGULI·Dulikun1, ZENG Fan-lin1, MAYIRAN·Maimaiti1, AWAGULI·Maimaiti1, MAIDINUERHAN·Aizezi1, GUO Jun-xian3*. Ensemble Learning Model Incorporating Fractional Differential and
PIMP-RF Algorithm to Predict Soluble Solids Content of Apples
During Maturing Period[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3059-3066. |
[14] |
CHEN Jia-wei1, 2, ZHOU De-qiang1, 2*, CUI Chen-hao3, REN Zhi-jun1, ZUO Wen-juan1. Prediction Model of Farinograph Characteristics of Wheat Flour Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3089-3097. |
[15] |
GUO Ge1, 3, 4, ZHANG Meng-ling3, 4, GONG Zhi-jie3, 4, ZHANG Shi-zhuang3, 4, WANG Xiao-yu2, 5, 6*, ZHOU Zhong-hua1*, YANG Yu2, 5, 6, XIE Guang-hui3, 4. Construction of Biomass Ash Content Model Based on Near-Infrared
Spectroscopy and Complex Sample Set Partitioning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3143-3149. |
|
|
|
|