|
|
|
|
|
|
Concentration Estimation of Heavy Metal Cr in Soilsfrom Jiaojia-Type Gold Mining Areas Using Reflectance Spectroscopy |
WANG Fei1, WANG Ji-ning2, CAO Wen-tao1, KANG Ri-fei1, CAO Jian-fei1, WU Quan-yuan1* |
1. College of Geography and Environment, Shandong Normal University, Ji’nan 250014, China
2. Geological Environmental Monitoring Station of Shandong Province, Ji’nan 250014, China |
|
|
Abstract Heavy metal contamination has been rising markedly in mining area and a rapid and accurate assessment technique is of utmost importance. In this study, visible and near-infrared spectra combined with partial least square regression (PLSR) are developed to achieve the rapid monitoring of Cr in soilsfrom Jiaojia-type gold mines. A total of eighty five soil samples were collected to measure the spectra on the spot, thirty five of which were used for chemical analysis. PLSR models were established using primitive spectra (R) and first derivative (RD1), second derivative (RD2) and continuum removal (CR) data to find the most suitable calibration. The best predictive model that used RD1 spectra was applied to determine the contents of Cr in the untested samples and the spatial distribution map was created by universal kriging interpolation. Results illustrated that the major abundance of Cr was concentrated in the range of 36~48 mg·kg-1, with the highest value being 71.8 mg·kg-1 and lowest being 20.9 mg·kg-1. Furthermore, elevation and the orefield showed prominent impacts on the content values of Cr. Generally plain and the areas closed to gold mines tend to have higher concentrations of Cr.
|
Received: 2016-01-16
Accepted: 2016-05-19
|
|
Corresponding Authors:
WU Quan-yuan
E-mail: wqy6420582@163.com
|
|
[1] Chen T, Chang Q, Liu J, et al. Science of The Total Environment, 2016, 565: 155.
[2] Chen H, An J, Wei S, Gu J. PLoS ONE,2015,10(9): e0137694. doi:10.1371/journal.pone.0137694.
[3] Kooistra L, Wehrens R, Leuven R, et al. Analytica Chimica Acta, 2001, 446(1): 97.
[4] Grzegorz S, Gregory W M, Tomasz I S, et al. Journal of Environment Quality, 2004, 33: 2056.
[5] Wu Y, Chen J, Wu X, et al. Applied Geochemistry, 2005, 20(6): 1051.
[6] Kemper T, Sommer S. Environmental Science & Technology,2002,36(12): 2742.
[7] Cui L, Zhang Y J, Huang W E, et al. Analytical Chemistry, 2016, 88(6): 3164.
[8] Chen T, Chang Q, Clevers J, et al. Environmental Pollution, 2015, 206: 217.
[9] Shi T, Chen Y, Liu Y, et al. Journal of Hazardous Materials,2014,265: 166.
[10] Tan K, Ye Y Y, Du P J, et al. Spectroscopy and Spectral Analysis,2014,34(12): 3317.
[11] Mohamed E S, Ali A M, El Shirbeny M A, et al. Eurasian Soil Science, 2016, 49(6): 632.
[12] Xie X L, Sun B, Hao H T. Spectroscopy and Spectral Analysis,2007,27(6): 982.
[13] Song L, Jian J, Tan D J, et al. International Journal of Applied Earth Observation and Geoinformation,2015,34: 1.
[14] Shi T, Liu H, Chen Y, et al. Journal of Hazardous Materials, 2016, 308: 243.
[15] Wu J, Teng Y, Lu S, et al. PLoS ONE,2014,9(11): e112917. doi:10.1371/journal.pone.0112917.
[16] Barthès B G, Brunet D, Hien E, et al. Soil Biology and Biochemistry, 2008, 40(6): 1533.
[17] Dong J, Dai W, Xu J, et al. International Journal of Environmental Research and Public Health, 2016, 13(7): 640.
[18] Near-Infrared Spectroscopy in Ggriculture. Madison: American Society of Agronomy, 2004. 115.
[19] Galvez-Sola L, Morales J, Mayoral A M, et al. Talanta,2013,110: 81.
[20] Wang C, Huang C, Qian J, et al. PLoS ONE,2014,9(2): e88279. doi:10.1371/journal.pone.0088279.
[21] Rossel R A V, Walvoort D J J, McBratney A B, et al. Geoderma, 2006, 131(1): 59.
[22] He W, Lee J H, Hur J. Chemosphere, 2016, 150: 184.
[23] Ren H Y, Zhuang D F, Singh A N, et al. Pedosphere, 2009, 19(6): 719.
[24] Vohland M, Bossung C, Fründ H C. Journal of Plant Nutrition and Soil Science, 2009, 172(2): 201.
[25] Niazi N K, Singh B, Minasny B. International Journal of Environmental Science and Technology, 2015, 12(6): 1965.
[26] Xiao J Y, Wang Y, Zhang Q, et al. Hubei Agriculture Sciences,2013,52(6): 1251.
[27] Xie X L, Pan X Z, Sun B. Pedosphere, 2012, 22(3): 351.
[28] Mouazen A M, Kuang B, De Baerdemaeker J, et al. Geoderma, 2010, 158(1): 23.
[29] Rossel R A V, McGlynn R N, McBratney A B. Geoderma, 2006, 137(1): 70.
[30] Moros J, Vallejuelo S F O, Gredilla A, et al. Environmental science & technology, 2009, 43(24): 9314.
[31] Baveye P C, Laba M. Journal of Hazardous Materials, 2015, 285: 137.
[32] Gholizadeh A, Borvka L, Vaát R, et al. PLoS ONE,2015,10(2): e0117457.doi:10.1371/journal.pone.0117457.
[33] Albrecht R, Joffre R, Petit J L, et al. Environmental Science & Technology, 2008, 43(3): 804.
[34] Chang C W, Laird D A, Mausbach M J, et al. Soil Science Society of America Journal, 2001, 65(2): 480.
[35] Jiang Q, Chen Y, Guo L, et al. Remote Sensing, 2016, 8(9): 755.
[36] Wang C L, Pang X G, Yang L Y, et al. Geochimica, 2013, 42(6): 559.
[37] Stenberg B, Rossel R A V, Mouazen A M, et al. Advances in Agronomy, 2010, 107: 163. |
[1] |
CHENG Jia-wei1, 2,LIU Xin-xing1, 2*,ZHANG Juan1, 2. Application of Infrared Spectroscopy in Exploration of Mineral Deposits: A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 15-21. |
[2] |
HAO Zi-yuan1, YANG Wei1*, LI Hao1, YU Hao1, LI Min-zan1, 2. Study on Prediction Models for Leaf Area Index of Multiple Crops Based on Multi-Source Information and Deep Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3862-3870. |
[3] |
ZHENG Ni-na1, 2*, XIE Pin-hua1, QIN Min1, DUAN Jun1. Research on the Influence of Lamp Structure of the Combined LED Broadband Light Source on Differential Optical Absorption Spectrum
Retrieval and Its Removing Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3339-3346. |
[4] |
HE Yan-ping, WANG Xin, LI Hao-yang, LI Dong, CHEN Jin-quan, XU Jian-hua*. Room Temperature Synthesis of Polychromatic Tunable Luminescent Carbon Dots and Its Application in Sensitive Detection of Hemoglobin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3365-3371. |
[5] |
KANG Ming-yue1, 3, WANG Cheng1, SUN Hong-yan3, LI Zuo-lin2, LUO Bin1*. Research on Internal Quality Detection Method of Cherry Tomatoes Based on Improved WOA-LSSVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3541-3550. |
[6] |
GUO Ge1, 3, 4, ZHANG Meng-ling3, 4, GONG Zhi-jie3, 4, ZHANG Shi-zhuang3, 4, WANG Xiao-yu2, 5, 6*, ZHOU Zhong-hua1*, YANG Yu2, 5, 6, XIE Guang-hui3, 4. Construction of Biomass Ash Content Model Based on Near-Infrared
Spectroscopy and Complex Sample Set Partitioning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3143-3149. |
[7] |
ZHANG Yue1, 3, ZHOU Jun-hui1, WANG Si-man1, WANG You-you1, ZHANG Yun-hao2, ZHAO Shuai2, LIU Shu-yang2*, YANG Jian1*. Identification of Xinhui Citri Reticulatae Pericarpium of Different Aging Years Based on Visible-Near Infrared Hyperspectral Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3286-3292. |
[8] |
ZHANG Jun-he, YU Hai-ye, DANG Jing-min*. Research on Inversion Model of Wheat Polysaccharide Under High Temperature and Ultraviolet Stress Based on Dual-Spectral Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2705-2709. |
[9] |
YU Yang1, ZHANG Zhao-hui1, 2*, ZHAO Xiao-yan1, ZHANG Tian-yao1, LI Ying1, LI Xing-yue1, WU Xian-hao1. Effects of Concave Surface Morphology on the Terahertz Transmission Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2843-2848. |
[10] |
LI Xin-xing1, 2, ZHANG Ying-gang1, MA Dian-kun1, TIAN Jian-jun3, ZHANG Bao-jun3, CHEN Jing4*. Review on the Application of Spectroscopy Technology in Food Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2333-2338. |
[11] |
ZHANG Zi-hao1, GUO Fei3, 4, WU Kun-ze1, YANG Xin-yu2, XU Zhen1*. Performance Evaluation of the Deep Forest 2021 (DF21) Model in
Retrieving Soil Cadmium Concentration Using Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2638-2643. |
[12] |
LI Bin, SU Cheng-tao, YIN Hai, LIU Yan-de*. Hyperspectral Imaging Technology Combined With Machine Learning for Detection of Moldy Rice[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2391-2396. |
[13] |
PU Gui-juan1, 2, CHENG Si-yang3*, LI Song-kui4, LÜ Jin-guang2, CHEN Hua5, MA Jian-zhong3. Spectral Inversion and Variation Characteristics of Tropospheric NO2
Column Density in Lhasa, Tibet[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1725-1730. |
[14] |
ZHANG Mei-zhi1, ZHANG Ning1, 2, QIAO Cong1, XU Huang-rong2, GAO Bo2, MENG Qing-yang2, YU Wei-xing2*. High-Efficient and Accurate Testing of Egg Freshness Based on
IPLS-XGBoost Algorithm and VIS-NIR Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1711-1718. |
[15] |
ZHANG Rong1, 2, DUAN Ning1, 3, JIANG Lin-hua1, 3*, XU Fu-yuan3, JIN Wei3, LI Jian-hui1. Study on Optical Path Optimization for Direct Determination of
Spectrophotometry of High Concentration Hexavalent Chromium
Solution by Ultraviolet Visible Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1829-1837. |
|
|
|
|