光谱学与光谱分析 |
|
|
|
|
|
Advances in Spectroscopic Characters of Space Objects |
XU Can1, ZHANG Ya-sheng1, ZHAO Yang-sheng1, LI Peng2 |
1. Department of Space Equipment, Academy of Equipment, Beijing 101416, China 2. Company of Postgraduate Management, Academy of Equipment, Beijing 101416, China |
|
|
Abstract Spectroscopic characters of space objects are basic optical attributes which could stand for the material types of space objects. By comparing actual spectral characteristics with that obtained in the lab, the types of space materials can be identified, which is beneficial for the analysis of working states and compositions of space objects. Aiming at the problems of spectrum measurement and material information retrieval, the spectroscopic theory, retrieval methods and reddening effect of space objects spectrum are analyzed in this paper. The contributions on the spectrum from 350 to 2 500 nm from vibrational spectrum and electrical spectrum are investigated based on solid spectrum characters. Three methods commonly used in space objects material identification based on spectrum characters are studied, which are artificial neural network algorithm, particle swarm optimization algorithm and spectrum unmixing algorithm, and the features including spectrum reflectance and its derivative, center displacement are discussed. Reddening effect in spectrum measurement is studied, and it is shown that the reddening effect is related to the deoxidizing effect when some material access to space environments. The loose chemical bonds are formed due to the separation of oxygen and the combination of contaminations in space, which results in more absorptions of light energy and the higher slope of reflectance at longer wavelength that is named reddening effect. The reflectance of spectrum can be used to analyze material aging problems on the surface of satellite material under the continuous influences of harsh space environment, including chemical or physical changes, which are favorable for repairing existing satellite or launching new satellite.
|
Received: 2016-03-11
Accepted: 2016-07-05
|
|
Corresponding Authors:
XU Can
E-mail: 452394317@qq.com
|
|
[1] Shell J R. Advanced Maui Optical and Space Surveillance Technologies Conference, 2010: 2. [2] JIN Xiao-long, TANG Yi-jun, SUI Cheng-hua(金小龙, 唐轶峻, 隋成华). Chin. J. Space Sci.(空间科学学报), 2014, 34(1): 95. [3] Clark, R. Manuel of Remote Sensing, New-York: John Wiley & Sons, 1999. 10. [4] Clark R N, Swayze G A, Livo K E, et al. Journal of Geophysical Research Planets, 2003, 108(E12): 5. [5] Lambert J V,Mavko G E. NORAD Spacecraft Identification Conference Proceedings, 1975. [6] Caudill E L, Roggemann M C, Welch B M, et al. SPIE’s 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics. International Society for Optics and Photonics, 1995. 342. [7] Jorgensen K, Africano J, Hamada K, et al. Advances in Space Research, 2004, 34(5): 1021. [8] Jorgensen K, Africano J, Hamada K, et al. Advanced Maui Optical and Space Surveillance Technologies Conference, 2001. 127. [9] SUN Cheng-ming, ZHAO Fei, YUAN Yan(孙成明, 赵 飞, 袁 艳). Acta Physica Sinica(物理学报), 2015, 64(3): 034202-1. [10] SONG Wei,FENG Shi-qi, SHI Jing, et al(宋 薇, 冯诗淇, 石 晶, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2015, 35(6): 1464. [11] XING Mei-xia, XIA De-qiang(刑梅霞, 夏德强). Guangpu Fenxi(光谱分析). Beijing: Sinopec Press, 2012, 8: 6. [12] HAN Yu-ge, XUAN Yi-min(韩玉阁, 宣益民). Infrared and Laser Engineering(红外与激光工程), 2005, 34(1): 34. [13] LI Ya-nan, SUN Xiao-bing, MAO Yong-na, et al(李雅男, 孙晓兵, 毛永娜, 等). Infrared and Laser Engineering(红外与激光工程), 2012, 41(1): 205. [14] HOU Qing-yu, WANG Fu-gang, ZHI Xi-yang, et al(侯晴宇, 王付刚, 智喜洋, 等). Acta Optica Sinica(光学学报), 2015,(4): 6. [15] TANG Yi-jun, JIANG Xiao-jun, WEI Jian-yan, et al(唐轶峻, 姜晓军, 魏建彦, 等). Journal of Astronautics(宇航学报), 2008, 29(4): 1094. [16] ZHAO Bin, YANG Su-hui, WANG Shi-tao, et al(赵 彬, 杨苏辉, 王世涛, 等). Acta Optica Sinica(光学学报), 2009,(12): 3395. [17] Bedard D. Advanced Maui Optical and Space Surveillance Technologies Conference,2011. 7. [18] X D, Torrance K E, Sillion F X, et al. Acm Siggraph Computer Graphics, 1991, 25(4): 175. [19] Cauquy M A A, Roggemann M C, Schulz T J. Defense and Security. International Society for Optics and Photonics, 2004. 48. [20] Cowardin H, Seitzer P, Abercromby K, et al. Advanced Maui Optical and Space Surveillance Technologies Conference, 2010. 14. [21] Abercromby K J, Hamada K, Guyote M, et al. Advanced Maui Optical and Space Surveillance Technologies Conference, 2007. 10. [22] Schildknecht T, Vannanti A, Krag H, et al. Advanced Maui Optical and Space Surveillance Technologies Conference, 2009. 6. [23] Jorgensen K, Okada J, Bradford L, et al. Advanced Maui Optical and Space Surveillance Technologies Conference, 2003. 4. [24] Khatipov S A. Advanced Maui Optical and Space Surveillance Technologies Conference, 2006. 1. [25] LI Ya-nan, SUN Xiao-bing, QIAO Yan-li, et al(李雅男, 孙晓兵, 乔延利, 等). Journal of Applied Optics(应用光学), 2009, 30(6): 895. [26] LIU Yang-yang, Lü Qun-bo, ZENG Xiao-ru, et al(刘扬阳, 吕群波, 曾晓茹, 等). Acta Physica Sinica(物理学报), 2013,(6): 17. [27] YUAN Yan,SUN Cheng-ming, ZHANG Xiu-bao(袁 艳, 孙成明, 张修宝). Acta Physica Sinica(物理学报), 2010, 59(3): 2097. [28] Mark Ackermann, John McGraw, Jeffrey Martion, et al. Advanced Maui Optical and Space Surveillance Technologies Conference, 2003. 1. [29] Guyote M, Abercromby K J, Okada J. Advanced Maui Optical and Space Surveillance Technologies Conference, 2006. 5. [30] Marchi S, Brunetto R, Magrin S, et al. Astronomy & Astrophysics, 2005, 443(3): 769. [31] Stras L N, Kekez D D, Wells G J, et al. Proc. AMSAT-NA 21st Space Symposium, Toronto, Canada,2003. 150. [32] Africano J L, Stansbery E G, Kervin P W. Advances in Space Research, 2004, 34(5): 892. [33] Hapke B. Journal of Geophysical Research, 2001, 106(106): 10039. |
[1] |
LI Xiao-dian1, TANG Nian1, ZHANG Man-jun1, SUN Dong-wei1, HE Shu-kai2, WANG Xian-zhong2, 3, ZENG Xiao-zhe2*, WANG Xing-hui2, LIU Xi-ya2. Infrared Spectral Characteristics and Mixing Ratio Detection Method of a New Environmentally Friendly Insulating Gas C5-PFK[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3794-3801. |
[2] |
JIANG Chun-xu1, 2, TAN Yong1*, XU Rong3, LIU De-long4, ZHU Rui-han1, QU Guan-nan1, WANG Gong-chang3, LÜ Zhong1, SHAO Ming5, CHENG Xiang-zheng5, ZHOU Jian-wei1, SHI Jing1, CAI Hong-xing1. Research on Inverse Recognition of Space Target Scattering Spectral
Image[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3023-3030. |
[3] |
YAN Ming-liang1, ZHANG Chen-long2, ZHAO Lian-xiang3, ZHAO Hua-he4, GAO Xun2*. Spectral Characteristics of Ge Plasma Induced by Femtosecond Pulsed Laser Ablation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2095-2098. |
[4] |
YUAN Kai-xin, ZHUO Jin, ZHANG Qing-hua, LI Ya-guo*. Study on the Spectral and Laser Damage Resistance of CO2 Laser Modified Sol-Gel SiO2 Thin Films[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1752-1759. |
[5] |
LI Zhi1, WANG Xia1*, XU Can1*, LI Peng2, HUO Yu-rong1, FU Jing-yu1, WANG Pei1, FENG Fei3. Review of Spectral Characterization and Identification of Unresolved Space Objects[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1329-1339. |
[6] |
AN Huan1, YAN Hao-kui2, XIANG Mei1*, Bumaliya Abulimiti1*, ZHENG Jing-yan1. Spectral and Dissociation Characteristics of p-Dibromobenzene Based on External Electric Field[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 405-411. |
[7] |
DENG Shi-yu1, 2, LIU Cheng-zhi1, 4*, TAN Yong3*, LIU De-long1, ZHANG Nan1, KANG Zhe1, LI Zhen-wei1, FAN Cun-bo1, 4, JIANG Chun-xu3, LÜ Zhong3. A Combination of Multiple Deep Learning Methods Applied to Small-Sample Space Objects Classification[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 609-615. |
[8] |
CHEN Feng-nong1, SANG Jia-mao1, YAO Rui1, SUN Hong-wei1, ZHANG Yao1, ZHANG Jing-cheng1, HUANG Yun2, XU Jun-feng3. Rapid Nondestructive Detection and Spectral Characteristics Analysis of Factors Affecting the Quality of Dendrobium Officinale[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3276-3280. |
[9] |
DENG Shi-yu1,2, LIU Cheng-zhi1,4*, TAN Yong3*, LIU De-long1, JIANG Chun-xu3, KANG Zhe1, LI Zhen-wei1, FAN Cun-bo1,4, ZHU Cheng-wei1, ZHANG Nan1, CHEN Long1,2, NIU Bing-li1,2, LÜ Zhong3. Research on Spectral Measurement Technology and Surface Material Analysis of Space Target[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3299-3306. |
[10] |
WANG Wen, QIU Gui-hua*, PAN Shi-bing, ZHANG Rui-rong, HAN Jian-long, WANG Yi-ke, GUO Yu, YU Ming-xun. Terahertz Absorption and Molecular Vibration Characteristics of PA66 Polymer Material[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2702-2706. |
[11] |
WANG Yuan1, 2, 3, WANG Jin-liang1, 2, 3*. Chlorophyll Fluorescence-Spectral Characteristics of Vegetables Under Different Fertilizer Treatments[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2427-2433. |
[12] |
WU Qi-jun1, DU Qing1, HAN Li-min1, WANG Ling-xuan2. Study on Physical Properties and Spectra of AlO in External Radiation Field[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(04): 1023-1027. |
[13] |
FANG Zi-qiu1,2, CHEN Guo-qing1,2*, WU Ya-min1,2. Studyon the Spectral Properties of Riboflavin in Different Polar Solvents[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(04): 1132-1136. |
[14] |
LI Qing-ling1, 2, 3, YIN Da-yi1, 2, 3*. A Study of Spectral Polarization Properties of Oil Slick with Ellipsometry from Ultraviolet to Near-Infrared[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(06): 1661-1666. |
[15] |
WANG Jin-xia1, LUO Le1, CHEN Yu-cheng2, HE Qing-ming3, ZHAN Ling-ling1, ZHAO Xue1. Spectra Characteristic and Algicidal Mechanism Of Chryseobaterium sp. S7 on Microcystis Aeruginosa[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(06): 1817-1822. |
|
|
|
|