|
|
|
|
|
|
A Combination of Multiple Deep Learning Methods Applied to Small-Sample Space Objects Classification |
DENG Shi-yu1, 2, LIU Cheng-zhi1, 4*, TAN Yong3*, LIU De-long1, ZHANG Nan1, KANG Zhe1, LI Zhen-wei1, FAN Cun-bo1, 4, JIANG Chun-xu3, LÜ Zhong3 |
1. Changchun Observatory of National Astronomical Observators, Chinese Academy of Sciences, Changchun 130117, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. School of Science, Changchun University of Science and Technology, Changchun 130022, China
4. Key Laboratory of Space Object & Debris Observation, PMO, CAS, Nanjing 210008, China
|
|
|
Abstract With the continuous improvement of the sensitivity, accuracy and easy use of spectral detection instruments in recent years, spectral technology has penetrated the identification and analysis of material components in all walks of life. Spectral observation of space targets is one of the important extensions of traditional optical observations. It has attracted much attention due to its non-contact and damage-free advantages. However, due to the limited observation conditions, the amount of spectral data of space targets is minimal. Traditional methods cannot achieve better results in classification analysis. In this paper, Firstly, the hyperspectral image of the space target is obtained through the spectroscopic camera terminal mounted on the 1.2 m space target optical telescope; Secondly, the one-dimensional spectral data of the space target is extracted through the astronomical photometric IRAF method; Finally, the combination of multiple deep learning methods, classify the spectral data of space targets. Accordingly, this paper proposes a combination of multiple deep learning methods to solve small sample data’s spatial object classification problem. This method uses Density Clustering method to roughly classify spatial targets, one-dimensional Generative Adversarial Network method to generate spatial target data, one-dimensional Convolutional Neural Network method to finely classify spatial targets, the combination of three methods can achieve relatively good experimental results and overall accuracy is about 79.1% (Based on the combination of Density Clustering, Oversampling, one-dimensional Convolutional Neural Network methods; Based on the combination of K-means, one-dimensional Generative Adversarial Network, one-dimensional Convolutional Neural Network methods; Based on the combination of K-means, Oversampling, One-dimensional Convolutional Neural Network methods, the overall accuracy is about 78.4%, 77.9%, 77.2%). In the rough classification model, the overall accuracy of the Density Clustering method is about 0.67% higher than the K-means method; In the data augmentation model, the overall accuracy of the one-dimensional Generative Adversarial Network method is about 1.52% higher than the Oversampling method; In the fine classification model, the two-layer network of the one-dimensional Convolutional Neural Network method has an average accuracy of only about 0.003% higher than the three-layer network, but the calculation time is longer. The accuracy of the four combined methods are higher than the single method. The experimental results show that the combination method proposed in this paper can achieve fine classification and high accuracy when the small sample space target category is unknown. It provides a certain reference value for realizing the integrated analysis of the map under the minimal data volume of the space target.
|
Received: 2021-01-08
Accepted: 2021-02-07
|
|
Corresponding Authors:
LIU Cheng-zhi, TAN Yong
E-mail: lcz@cho.ac.cn;laser95111@126.com
|
|
[1] Kim K J, Cho S. Pattern Analysis & Applications, 2015,(18): 553. [2] YAO Yan, SHEN Xiao-min, QIU Qian, et al(姚 燕, 沈晓敏, 邱 倩, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(6): 1857.
[3] Mohiuddin A, Raihan S, Syed M S I. Electronics, 2020, 9(8): 1295.
[4] Rodriguez, Alex, Laio, et al. Science, 2014, 344(6191): 1492.
[5] Rudolf S, Kristian S. Advances in Data Analysis and Classification, 2020,15(1):83.
[6] LI Yan-xia, CHAI Yi, HU You-qiang, et al(李艳霞, 柴 毅, 胡友强, 等). Control and Decision(控制与决策), 2019, 34(4): 673.
[7] Ghahramani Z, Welling M, Cortes C. NIPS,2014,(2): 2672.
[8] Wang Z, She Q, Ward T E. Generative Adversarial Networks: A Sarvey and Taxonomy, 2019, arXiv: 1906.01529[CS.LG].
[9] Koziarski M, Krawczyk B, Wozniak M. Neurocomputing, 2019,(343): 19.
[10] LeCun Y, Bottou L, Bengio Y, et al. Proceedings of the IEEE, 1998,(86): 2278.
[11] Zheng Z P, Qiu B, Luo A L, et al. Publications of the Astronomical Society of the Pacific, 2020, 132(1008): 024504.
|
[1] |
LI Xin-ting, ZHANG Feng, FENG Jie*. Convolutional Neural Network Combined With Improved Spectral
Processing Method for Potato Disease Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 215-224. |
[2] |
LAN Yan1,WANG Wu1,XU Wen2,CHAI Qin-qin1*,LI Yu-rong1,ZHANG Xun2. Discrimination of Planting and Tissue-Cultured Anoectochilus Roxburghii Based on SMOTE and Inception-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 158-163. |
[3] |
HUANG You-ju1, TIAN Yi-chao2, 3*, ZHANG Qiang2, TAO Jin2, ZHANG Ya-li2, YANG Yong-wei2, LIN Jun-liang2. Estimation of Aboveground Biomass of Mangroves in Maowei Sea of Beibu Gulf Based on ZY-1-02D Satellite Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3906-3915. |
[4] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[5] |
HUANG Meng-qiang1, KUANG Wen-jian2, 3*, LIU Xiang1, HE Liang4. Quantitative Analysis of Cotton/Polyester/Wool Blended Fiber Content by Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3565-3570. |
[6] |
JIANG Chun-xu1, 2, TAN Yong1*, XU Rong3, LIU De-long4, ZHU Rui-han1, QU Guan-nan1, WANG Gong-chang3, LÜ Zhong1, SHAO Ming5, CHENG Xiang-zheng5, ZHOU Jian-wei1, SHI Jing1, CAI Hong-xing1. Research on Inverse Recognition of Space Target Scattering Spectral
Image[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3023-3030. |
[7] |
LIU Fei1, TAN Jia-jin1*, XIE Gu-ai2, SU Jun3, YE Jian-ren1. Early Diagnosis of Pine Wilt Disease Based on Hyperspectral Data and Needle Resistivity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3280-3285. |
[8] |
CAI Jian-rong1, 2, HUANG Chu-jun1, MA Li-xin1, ZHAI Li-xiang1, GUO Zhi-ming1, 3*. Hand-Held Visible/Near Infrared Nondestructive Detection System for Soluble Solid Content in Mandarin by 1D-CNN Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2792-2798. |
[9] |
LI Xin-xing1, 2, ZHANG Ying-gang1, MA Dian-kun1, TIAN Jian-jun3, ZHANG Bao-jun3, CHEN Jing4*. Review on the Application of Spectroscopy Technology in Food Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2333-2338. |
[10] |
PU Shan-shan, ZHENG En-rang*, CHEN Bei. Research on A Classification Algorithm of Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2446-2451. |
[11] |
TANG Ting, PAN Xin*, LUO Xiao-ling, GAO Xiao-jing. Fusion of ConvLSTM and Multi-Attention Mechanism Network for
Hyperspectral Image Classification[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2608-2616. |
[12] |
LI Wen-xia1, DU Yu-jun2, WANG Yue1, LIU Zheng-dong3*, ZHENG Jia-hui1, DU Wen-qian1, WANG Hua-ping4. Research on On-Line Efficient Near-Infrared Spectral Recognition and Automatic Sorting Technology of Waste Textiles Based on Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2139-2145. |
[13] |
LIANG Wan-jie1, FENG Hui2, JIANG Dong3, ZHANG Wen-yu1, 4, CAO Jing1, CAO Hong-xin1*. Early Recognition of Sclerotinia Stem Rot on Oilseed Rape by Hyperspectral Imaging Combined With Deep Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2220-2225. |
[14] |
JIN Cheng-liang1, WANG Yong-jun2*, HUANG He2, LIU Jun-min3. Application of High-Dimensional Infrared Spectral Data Preprocessing in the Origin Identification of Traditional Chinese Medicinal Materials[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2238-2245. |
[15] |
JIANG Xia*, QIU Bo, WANG Lin-qian, GUO Xiao-yu. Automatic Classification Method of Star Spectra Based on
Semi-Supervised Mode[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1875-1880. |
|
|
|
|