光谱学与光谱分析 |
|
|
|
|
|
Mid-Infrared Trace CH4 Detector Based on TDLAS-WMS |
QU Shi-min, WANG Ming, LI Nan |
College of Electronic Science and Engineering, Jilin University, Changchun 130012, China |
|
|
Abstract In order to detect trace methane (CH4) with non-contact method, a trace CH4 detector is designed and developed with the combination of tunable diode laser absorption spectroscopy (TDLAS) and wavelength modulation spectroscopy (WMS) detection technology, using the absorption line (1 332.8 cm-1) of CH4 in mid-infrared band. The instrument uses mid-infrared quantum cascaded laser (QCL) with centre wavelength at 7.5 μm, and uses the method of changing the injecting current (0.6~1.6 A) of QCL with fixed working temperature to make the emission wavelength of QCL to scan the methane’s absorption line (1 332.8 cm-1) via tuning parameters 0.2 cm-1·A-1. In terms of optical structure, the instrument using a gas absorption sealed herriott cell with 76 m long optical path, cooperating with difference detection optical path, reduces the noise which caused by the fluctuation of QCL, and guarantees the detection of trace CH4. In the experiment, we adopted minimum mean square error criterion to fit the relationship between methane concentration and harmonic peak signal. In addition, the minimum detection limit is 40×10-9, and the relative error of test results is 0.09%., The stability is better than 2.8%, which verify the feasibility of the instrument.
|
Received: 2015-06-30
Accepted: 2015-11-09
|
|
Corresponding Authors:
QU Shi-min
E-mail: qsm_jlu@163.com
|
|
[1] Wagner S, Klein M, Kathrotia T, et al. Applied Physics B, 2012, 109(3): 533. [2] Zhang B, Wang Z R, Brodbeck S, et al. Light: Science & Applications, 2014, 3: e135. [3] LIU Fei, LIN Jun, WANG Yan-zhang, et al(刘 飞,林 君,王言章,等). Laser Journal, 2014, 35(12): 75. [4] Oh J H, Yang S J, Do Y R, et al. Light: Science & Applications, 2014, 3: e141. [5] Tao L, Sun K, Khan M A, et al. Optics Express, 2012, 20(27): 28106. [6] Chen Chen, Robert W Newcomb, Wang Yiding. Applied Physics B, 2013, 113(4): 491. [7] Tilma B W, Mangold M, Zaugg C A, et al. Light: Science & Applications, 2015, 4: e310. [8] CHEN Chen, WANG Biao, LI Chun-guang, et al(陈 晨,王 彪,李春光,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2014, 34(3): 838. [9] Chow W W, Jahnke F, Gies C. Light: Science & Applications, 2014, 3: e201. [10] YUAN Song, KAN Rui-feng, HE Ya-bai, et al(袁 松, 阚瑞峰, 何亚柏, 等). Chinese J. Lasers, 2013, 40(5): 0515002. [11] Hegenbarth R, Steinmann A, Sarkisov S, et al. Optics Letters, 2012, 37(17): 3513. [12] Ye W L, Zheng C T, Yu X, et al. Sensors and Actuators B, 2011, 155(1): 37. [13] CHEN Xiao, SUI Qing-mei, MIAO Fei, et al(陈 霄,隋青美,苗 飞,等). Optics and Precision Engineering(光学 精密工程),2011,19(7):1495. [14] CHEN Chen, HUANG Jian-qiang, Lü Mo, et al(陈 晨, 黄渐强, 吕 墨, 等). Journal of Jilin University·Engineering and Technology Edition(吉林大学学报·工学版), 2011, 41(6): 1738. [15] Roller C, Kosterev A A, Tittel F K, et al. Optics Letters, 2003, 28(21): 2052. |
[1] |
LIU Shu-hong1, 2, WANG Lu-si3*, WANG Li-sheng3, KANG Zhi-juan1, 2,WANG Lei1, 2,XU Lin1, 2,LIU Ai-qin1, 2. A Spectroscopic Study of Secondary Minerals on the Epidermis of Hetian Jade Pebbles From Xinjiang, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 169-175. |
[2] |
WANG Yu1, 2, ZHANG Xian-ke1, 2, TAN Tu1, WANG Gui-shi1, LIU Kun1, SUN Wan-qi3*, QIU Zi-chen4, GAO Xiao-ming1, 2. Research on Moving Observation of Typical Greenhouse Gas Sources in Hefei by Using Off-Axis Integrated Cavity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3293-3301. |
[3] |
TIAN Si-di1, WANG Zhen1, DU Yan-jun2, DING Yan-jun1, PENG Zhi-min1*. High Precision Measurement of Spectroscopic Parameters of CO at 2.3 μm Based on Wavelength Modulation-Direct Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2246-2251. |
[4] |
ZHANG Zhi-wei1, 2, QIU Rong1, 2*, YAO Yin-xu1, 2, WAN Qing3, PAN Gao-wei1, SHI Jin-fang1. Measurement and Analysis of Uranium Using Laser-Induced
Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 57-61. |
[5] |
ZHAO Guo-qiang1, QIU Meng-lin1*, ZHANG Jin-fu1, WANG Ting-shun1, WANG Guang-fu1, 2*. Peak Splitting Method of Ion-Beam-Induced-Luminescence Spectrum Based on Voigt Function Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3512-3518. |
[6] |
CAO Su-qiao1, DAI Hui1*, WANG Chao-wen2, YU Lu1, ZUO Rui1, WANG Feng1, GUO Lian-qiao1. Gemological and Spectral Characteristics of Emeralds From Swat Valley, Pakistan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3533-3540. |
[7] |
DENG Xian-ze1, 2, DENG Xi-guang1, 2*, YANG Tian-bang1, 2, CAI Zhao3, REN Jiang-bo1, 2, ZHANG Li-min1, 2. To Reveal the Occurrence States and Enrichment Mechanisms of Metals in Modules From Clarion-Clipperton Zone in Eastern Pacific by High
Resolution Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2522-2527. |
[8] |
WANG Xin-qiang1, 3, HU Feng1, 3, XIONG Wei2, YE Song1, 3, LI Shu1, 3, GAN Yong-ying1, 3, YIN Shan1, 3, WANG Fang-yuan1, 3*. Research on Raman Signal Processing Method Based on Spatial Heterodyne[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 93-98. |
[9] |
JIAO Qing-liang1, LIU Ming1*, YU Kun2, LIU Zi-long2, 3, KONG Ling-qin1, HUI Mei1, DONG Li-quan1, ZHAO Yue-jin1. Spectral Pre-Processing Based on Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 292-297. |
[10] |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3*. Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3909-3914. |
[11] |
ZHU Zhi-gao1, LIU Ya1*, YANG Jie1, HU Guo-qing2, 3. A Review of Single-Cavity Dual-Comb Laser and Its Application in Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3321-3330. |
[12] |
MA Li1, 2, FAN Xin-li1, 2, ZHANG Shuo1, 2, WANG Wei-feng1, 2, WEI Gao-ming1, 2. Research on CH4 Gas Detection and Temperature Correction Based on TDLAS Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3632-3638. |
[13] |
SHAO Guo-dong1, LI Zheng-hui1, GUO Song-jie1, ZOU Li-chang1, DENG Yao1, LU Zhi-min1, 2, 3, YAO Shun-chun1, 2, 3*. Research on Gas Concentration Measurement Method Based on Gradient Descent Method to Fit Spectral Absorption Signal Directly[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3256-3261. |
[14] |
ZHANG Zhi-qi1, ZHAO Tong1, LIU Ling1, LI Yan1,2*. Spectral Characteristics of Madagascar Agates[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3227-3232. |
[15] |
WU Lu-yi, GAO Guang-zhen, LIU Xin, GAO Zhen-wei, ZHOU Xin, YU Xiong, CAI Ting-dong*. Study on the Calibration of Reflectivity of the Cavity Mirrors Used in Cavity Enhanced Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2945-2949. |
|
|
|
|