光谱学与光谱分析 |
|
|
|
|
|
A Mononuclear Terbium(Ⅲ) Complex Constructed with 2,2′-Oxybis (benzoic acid) and 1,10-Phenanthroline: Fluorescence and Fluorescent Sensing for Fe3+ ion |
ZHANG De-chun1,2,3, ZHOU Xin2, LI Xia2* |
1. School of Life Sciences, Capital Normal University, Beijing 100048, China 2. Department of Chemistry, Capital Normal University, Beijing 100048, China 3. Department of Materials & Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China |
|
|
Abstract New complex [Tb(2,2′-oba)2(phen)2]-(H+3O) (2,2′-oba=2,2′-oxybis(benzoic acid), phen=1,10-phenanthroline) was synthesized under hydrothermal condition and characterized with X-ray single crystal diffraction. Complex reveals mononuclear structure containing TbO4N4 unit. Complex displays the emission peaks at 489,546,584 and 622 nm, corresponding to the 5D4→7FJ(J=6-3) transitions of Tb(Ⅲ) ion. The emission band at 546 nm corresponds to the 5D4→7F5 transition of the Tb(Ⅲ) ion, which gives an intense green luminescence output for the solid sample. The recognition for metal ions was discussed with fluorescent spectroscopy. The results show that it has high selectivity for Fe3+ via a fluorescence quenching mechanism. Luminescent investigations reveal that it can detect Fe3+ with relatively high sensitivity and selectivity, even when pH 4.0~8.0,which leads to its application in biotic and environmental system.
|
Received: 2015-10-02
Accepted: 2016-02-25
|
|
Corresponding Authors:
LI Xia
E-mail: xiali@cnu.edu.cn
|
|
[1] ZHU Yu-lian, HUANG Tao, ZHANG Qi, et al(朱玉莲,黄 韬,张 岐,等). Chinese Journal of Inorganic Chemistry(无机化学学报), 2011, 27(8): 1471. [2] Tan H L, Li Q, Ma C J, et al. Biosensors and Bioelectronics, 2015, 63: 566. [3] Hou Y L, Xu H, Cheng R R, et al. Chem. Commun., 2015, 51: 6769. [4] LI Xiang-hong, ZHAO Xin-di, Lü Kang-le, et al(李襄宏,赵鑫帝,吕康乐, 等). Chinese Journal of Inorganic Chemistry(无机化学学报), 2011, 27(2): 303. [5] Shi P F, Zhao B, Xiong G, et al. Chem. Commun., 2012, 48: 8231. [6] Shi P F, Hu H C, Zhang Z Y, et al. Chem. Commun., 2015, 51: 3985. [7] Wang Y N, Zhang P, Yu J H, et al. Dalton Trans., 2015, 44: 1655. [8] Hao J N, Yan B. Chem. Commun., 2015, 51(36): 7737. [9] Liu F H, Qin C, Ding Y, et al. Dalton Trans., 2015, 44: 1754. [10] FAN Fang-lu, JING Jin-qiu, CHEN Xue-mei(范方禄, 靖金球, 陈雪梅). Chinese Journal of Inorganic Chemistry(无机化学学报), 2015, 31(3): 548. [11] Yang C X, Ren H B, Yan X P. Anal. Chem., 2013, 85: 7441. [12] Hou G G, Liu Y, Liu Q K, et al. Chem. Commun., 2011, 47: 10731. [13] Tang Q, Liu S X, Liu Y W, et al. Inorg. Chem., 2013, 52: 2799. [14] Dang S, Ma E, Sun Z M, et al. J. Mater. Chem., 2012, 22: 16920. [15] Zheng M, Tan H Q, Xie Z G, et al.ACS Appl. Mater. Interfaces, 2013, 5: 1078. [16] Huang B F, Sun T, Sharifzadeh Z, et al. Inorganica Chimica Acta, 2013, 405: 83. [17] Tang L, Fu F, Wang J J, et al. Polyhedron, 2015, 88: 116. [18] Mei C Z, Li K H, Li H H. Z. Naturforsch, 2012, 67b: 1191. |
[1] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[2] |
XIA Ming-ming1, 2, LIU Jia3, WU Meng1, 2, FAN Jian-bo1, 2, LIU Xiao-li1, 2, CHEN Ling1, 2, MA Xin-ling1, 2, LI Zhong-pei1, 2, LIU Ming1, 2*. Three Dimensional Fluorescence Characteristics of Soluble Organic Matter From Different Straw Decomposition Products Treated With Calcium Containing Additives[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 118-124. |
[3] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[4] |
HAN Xue1, 2, LIU Hai1, 2, LIU Jia-wei3, WU Ming-kai1, 2*. Rapid Identification of Inorganic Elements in Understory Soils in
Different Regions of Guizhou Province by X-Ray
Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 225-229. |
[5] |
LIU Wei1, 2, ZHANG Peng-yu1, 2, WU Na1, 2. The Spectroscopic Analysis of Corrosion Products on Gold-Painted Copper-Based Bodhisattva (Guanyin) in Half Lotus Position From National Museum of China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3832-3839. |
[6] |
WANG Hong-jian1, YU Hai-ye1, GAO Shan-yun1, LI Jin-quan1, LIU Guo-hong1, YU Yue1, LI Xiao-kai1, ZHANG Lei1, ZHANG Xin1, LU Ri-feng2, SUI Yuan-yuan1*. A Model for Predicting Early Spot Disease of Maize Based on Fluorescence Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3710-3718. |
[7] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[8] |
SONG Yi-ming1, 2, SHEN Jian1, 2, LIU Chuan-yang1, 2, XIONG Qiu-ran1, 2, CHENG Cheng1, 2, CHAI Yi-di2, WANG Shi-feng2,WU Jing1, 2*. Fluorescence Quantum Yield and Fluorescence Lifetime of Indole, 3-Methylindole and L-Tryptophan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3758-3762. |
[9] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[10] |
YI Min-na1, 2, 3, CAO Hui-min1, 2, 3*, LI Shuang-na-si1, 2, 3, ZHANG Zhu-shan-ying1, 2, 3, ZHU Chun-nan1, 2, 3. A Novel Dual Emission Carbon Point Ratio Fluorescent Probe for Rapid Detection of Lead Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3788-3793. |
[11] |
YANG Ke-li1, 2, PENG Jiao-yu1, 2, DONG Ya-ping1, 2*, LIU Xin1, 2, LI Wu1, 3, LIU Hai-ning1, 3. Spectroscopic Characterization of Dissolved Organic Matter Isolated From Solar Pond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3775-3780. |
[12] |
QI Guo-min1, TONG Shi-qian1, LIN Xu-cong1, 2*. Specific Identification of Microcystin-LR by Aptamer-Functionalized Magnetic Nanoprobe With Laser-Induced Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3813-3819. |
[13] |
HE Yan-ping, WANG Xin, LI Hao-yang, LI Dong, CHEN Jin-quan, XU Jian-hua*. Room Temperature Synthesis of Polychromatic Tunable Luminescent Carbon Dots and Its Application in Sensitive Detection of Hemoglobin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3365-3371. |
[14] |
LIN Hong-jian1, ZHAI Juan1*, LAI Wan-chang1, ZENG Chen-hao1, 2, ZHAO Zi-qi1, SHI Jie1, ZHOU Jin-ge1. Determination of Mn, Co, Ni in Ternary Cathode Materials With
Homologous Correction EDXRF Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3436-3444. |
[15] |
LI Xiao-li1, WANG Yi-min2*, DENG Sai-wen2, WANG Yi-ya2, LI Song2, BAI Jin-feng1. Application of X-Ray Fluorescence Spectrometry in Geological and
Mineral Analysis for 60 Years[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 2989-2998. |
|
|
|
|