光谱学与光谱分析 |
|
|
|
|
|
Research on Test Method of Metallic Element Contained in Tea Based on EDXRF Technique |
QIN Xu-lei, LI Ye*, SONG Zhong-hua, WANG Guo-zheng, LI Shen, SHAN Gao-feng, DUANMU Qing-duo |
College of Science, Changchun University of Science and Technology, Changchun, 130022, China |
|
|
Abstract As it has been certified by experimental testing that when using the energy-dispersive X-ray fluorescence (EDXRF) method to analyze the metallic elements contained in the tea the energy segment of effective X-ray fluorescence photons is located between 3 and 16 keV. Accordingly the spectral correction element is targeted at the copper elements located near the energy center(8 keV). The copper elements are also used as the picketage to be the standard curve. In the energy segment of effective X-ray fluorescence photons contained in the tea 1.25 mg·kg-1 of the average detection limit was obtained by using the spiked method to analyze four elements of copper, iron, zinc and lead. Compared with the flame atomic absorption spectrum(FAAS), the actual relative error of the tested value by EDXRF is less than 6%, and the relative standard deviation is less than 5%. The result by T test shows that p>0.05. The conclusions are that there are no statistically significant differences between EDXRF and FAAS. The measured results gained by the two methods agree with each other. And EDXRF can be used thoroughly to test the metal contents contained in the tea. The result shows that it is feasible to test the metallic contents contained in the tea by EDXRF, and its measured result can meet the requirements of field testing and analysis.
|
Received: 2014-03-20
Accepted: 2014-06-28
|
|
Corresponding Authors:
LI Ye
E-mail: liyecust@163.com
|
|
[1] Natarajan V, Porwal N K, Babu Y, et al. Applied Radiation and Isotopes, 2010, 68: 1128. [2] Melquiades Fabio L, Thomaz Edivaldo L. Brazilian Workshop on Nuclear Physics, 2011, 1351: 312. [3] Sudarsan R, Pravas K J, Chitta R P. East Coast of India, Indian J. Marine Sci., 2013, 42(3): 370. [4] Kulkarni V A, Naidu V S, Jagtap T G. Journal of Environmental Biology, 2011, 32: 213. [5] Adamo P, Arienzo M, Imperato M, et al. Chemosphere, 2005, 61: 800. [6] Fang Yong, Zeng Libo, Lei Junfeng, et al. Journal of Instrument Analysis, 2001, 20(3): 23. [7] Xue Xiangming, Fang Fang, Wang Min, et al. Nuclear Electronics & Detection Technology, 2012, 32(11): 1320. [8] Cao Xuelei, Wang Huanyu, Zhang Chengmo, et al. Nuclear Electronics & Detection Technology, 2006, 26(6): 796. |
[1] |
YUAN Liang-jing1, JIA Yun-hai1, 2, CHENG Da-wei1, 2*. Study on Methods of Detection Limit in XRF Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 412-418. |
[2] |
XU Wei-xuan1, CHEN Wen-bin2, 3*. Determination of Barium in Purple Clay Products for Food Contact by
Energy Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 475-483. |
[3] |
NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, YUE Yuan-bo2, HU Xue-qiang2, CHEN Yu2, LI Xiao-jia1, 2*. The Detection of Mercury in Solutions After Thermal Desorption-
Enrichment by Energy Dispersive X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1117-1121. |
[4] |
NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, HU Xue-qiang2, LIAO Xue-liang2, YUE Yuan-bo2, LI Xiao-jia1,2, CHEN Ji-wen3. The Rapid Detection of Trace Mercury in Soil With EDXRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 734-738. |
[5] |
LI Qing-bo1, BI Zhi-qi1, SHI Dong-dong2. The Method of Fishmeal Origin Tracing Based on EDXRF Spectrometry Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 745-749. |
[6] |
ZHENG Pei-chao, ZHONG Chao, WANG Jin-mei*, LUO Yuan-jiang, LAI Chun-hong, WANG Xiao-fa, MAO Xue-feng. Evaluation of Flow Injection-Solution Cathode Glow Discharge With an Interference Filter Wheel for Spectral Discrimination[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 842-847. |
[7] |
WANG Hui1, 2, JIN Cheng3, ZHAO Lei1, 2, YU Lei3, LIN Fei3, SUN Xiao-fei3, JIA Yun-hai1, 2*. Original Position Statistic Distribution Analysis of Continuous Casting Round Billet of 18CrNiMo7-6 Low and Middle Alloy Steel[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3906-3911. |
[8] |
CAI Shun-yan1, 2, ZHOU Jian-bin1*, TUO Xian-guo1, YU Jie1. Optimized Filter Selection for Measuring Copper and Molybdenum Contents by EDXRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1934-1939. |
[9] |
LIU Yang1,2, ZHAO Tian-zhuo1*, YU Jin1, FU Jie1,2, LIAN Fu-qiang1, SUN Si-ning3, FAN Zhong-wei1*. Research on Iron-Based Alloy Spectral Lines Selection of Laser Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(01): 263-268. |
[10] |
XU Song-ning, LI Chuan-xiang, NING Ri-bo, LI Qian, JIANG Ran. Spectral Characteristics of Pb Plasma in Soil at Low Pressure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2877-2880. |
[11] |
CHEN Ji-wen1,2, NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, LIAO Xue-liang2, YANG Bo-zan2, YUE Yuan-bo2, HAN Bing2, LI Xiao-jia1,2. The Rapid Detection of Cadmium in Soil Based on Energy Dispersive X-Ray Flourescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2600-2605. |
[12] |
ZHANG Li-jiao1,2, LAI Wan-chang1, XIE Bo2, 3, HUANG Jin-chu1, LI Dan1, WANG Guang-xi1, YANG Qiang1, CHEN Xiao-li1. The Effect of Filterson on the Determination of Trace Heavy Metal Cd in Light Matrix by Energy Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1917-1921. |
[13] |
ZHENG Pei-chao, TANG Peng-fei, WANG Jin-mei*, LI Shi-yu. Analysis of Metal Elements Manganese Using Solution Cathode Glow Discharge-Atomic Emission Spectrometry with Portable Spectrographs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1567-1571. |
[14] |
XU Song-ning, JIANG Ran, NING Ri-bo, LI Qian, LI Chuan-xiang. Investigation on Emission Spectra of Microsecond Laser-Induced Soil Plasmas[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3204-3208. |
[15] |
ZHENG Pei-chao, TANG Peng-fei, WANG Jin-mei*, YANG Rui. Quantitative Analysis of Solution Cathode Glow Discharge-Atomic Emission Spectroscopy Coupled with Internal Standard Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2900-2904. |
|
|
|
|