光谱学与光谱分析 |
|
|
|
|
|
Photoluminescence Investigation of InAs Bimodal Self-Assembled Quantum Dots State Filling |
JIA Guo-zhi1, YAO Jiang-hong1*, ZHANG Chun-ling1, SHU Qiang1, LIU Ru-bin1, YE Xiao-ling2,WANG Zhan-guo1,2 |
1. The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials, Ministry of Education, Tianjin Key Laboratory of Photonics Materials and Technology for Information Science, TEDA Applied Physics School, Nankai University, Tianjin 300475, China 2. Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract Self-assembled InAs quantum dots were prepared on GaAs(100) substrate in a solid source molecular beam epitaxy system. The distribution and topographic images of uncapped dots were studied by atomic force microscope. The statistical result shows that the quantum dots are bimodal distribution. The photoluminescence spectrum results shows that the intensity of small size quantum dots dominated, which may be due to: (1) the state density of large quantum dots lower than that of small quantum dots; (2) the carriers capture rate of large size quantum dots is small relative to that of small ones; (3) there is a large strain barrier between large quantum dots and capping layer, and the large strain is likely to produce the defect and dislocation, resulting in a probability of carriers transferring from large quantum dots to small dots that is very small with temperature increasing.
|
Received: 2006-06-18
Accepted: 2006-09-26
|
|
Corresponding Authors:
YAO Jiang-hong
E-mail: yaojh@nankai.edu.cn
|
|
Cite this article: |
JIA Guo-zhi,YAO Jiang-hong,ZHANG Chun-ling, et al. Photoluminescence Investigation of InAs Bimodal Self-Assembled Quantum Dots State Filling[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2007, 27(11): 2178-2181.
|
|
|
|
URL: |
https://www.gpxygpfx.com/EN/Y2007/V27/I11/2178 |
[1] Lü Guo-wei, TANG Ying-jie, LI Wei-hua,et al(吕国伟, 唐英杰, 李卫华,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25(1): 39. [2] AN Long, TANG Yan, ZHANG Ji-dong,et al(安 龙, 唐 艳, 章继东,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2003, 23(3): 470. [3] FU Fang-zheng(付方正). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2001, 21(6): 749. [4] Polimeni A, Patanè A, Henini M Main. Phys. Rev. B,1999, 59(7-15): 5064. [5] Lobo C, Leon R, Marcinkeviius S, et al. Phys. Rev. B, 1999, 60(15-24): 16647. [6] Brusaferri L, Sanguinetti S, Grilli E, et al. Appl. Phys. Lett.,1996, 69(22): 3354. [7] Lee H, Lowe-Webb R, Johnson T J, et al. Appl. Phys. Lett., 1998, 73(24): 3556. [8] Xu Z Y, Lu Z D, Yang X P, et al. Phys. Rev. B, 1996, 54(15-16): 11528. [9] Lubyshev D I, Gonzlez-Boorrero P P, Marega E, et al. Appl. Phys. Lett., 1996, 68(2): 205. [10] Lap V D, Xiao M W, My Tra Thi Do,et al. J. Appl. Phys., 2005, 97(1): 013501. [11] Sanguinetti S, Henini M, Alessi M Grassi, et al. Phys. Rev. B, 1999, 60(11): 8276. [12] Zhang Y C, Huang C J, Liu F Q, et al. J. Appl. Phys, 2001, 90(4): 1973. [13] Chen J X, Markus A, Fiore A,et al. J. Appl. Phys, 2002, 91(10): 6710. [14] Adler F, Geiger M, Bauknecht A, et al. J. Appl. Phys.,1996,80: 4019. [15] Blom P W M, Smit C, Haverkort J E M, et al. Phys. Rev. B, 1993, 47: 2072. [16] Grundmann M, Ledentsov N N, Stier O, et al. Appl. Phys. Lett., 1996, 68: 979. [17] Fafard S, Leonard D, Merz J L, et al. Appl. Phys. Lett., 1994, 65: 1388. [18] Citrin D S. Phys. Rev. Lett., 1992, 23: 3393. |
[1] |
BAI Xi-lin1, 2, PENG Yue1, 2, ZHANG Xue-dong1, 2, GE Jing1, 2*. Ultrafast Dynamics of CdSe/ZnS Quantum Dots and Quantum
Dot-Acceptor Molecular Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 56-61. |
[2] |
YI Min-na1, 2, 3, CAO Hui-min1, 2, 3*, LI Shuang-na-si1, 2, 3, ZHANG Zhu-shan-ying1, 2, 3, ZHU Chun-nan1, 2, 3. A Novel Dual Emission Carbon Point Ratio Fluorescent Probe for Rapid Detection of Lead Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3788-3793. |
[3] |
LAI Niu, HUANG Qi-qiang, ZHANG Qin-yang, ZHANG Bo-wen, WANG Juan, YANG Jie, WANG Chong, YANG Yu, WANG Rong-fei*. Introduction to Perovskite Quantum Dots and Metal-Organic Frameworks and the Development of Composites[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3321-3329. |
[4] |
HAN Zhao-xia1, 2, 3*, YANG Zhi-jin1, ZHANG Zhi-hong1, DING Shu-hui1, ZHANG Da-wei1, 2, 3, HONG Rui-jin1, 2, 3, TAO Chun-xian1, 2, 3, LIN Hui1, 2, 3, YU De-chao1, 2, 3. Preparation of Full-Color Carbon Quantum Dots and Their Application in WLED[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1358-1366. |
[5] |
FENG Xiang-yu, JIANG Na, WANG Wei, LI Meng-qian, ZHAO Su-ling*, XU Zheng. One-Step Synthesis of Sulfur Quantum Dots and Electroluminescent Properties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1569-1574. |
[6] |
LI Shuai-wei1, WEI Qi1, QIU Xuan-bing1*, LI Chuan-liang1, LI Jie2, CHEN Ting-ting2. Research on Low-Cost Multi-Spectral Quantum Dots SARS-Cov-2 IgM and IgG Antibody Quantitative Device[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1012-1016. |
[7] |
LÜ Chun-qiu1, SI Lu-lu1, PAN Zhao-jin2, LIANG Yang-lin1, LIAO Xiu-fen2, CHEN Cong-jin2*. Fast and Ratiometric Detection of Dimethoate Via the Dual- Emission Center Nitrogen-Doped Carbon Quantum Dots[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 468-474. |
[8] |
LIU Yu-ying1, 2, WANG Xi-yuan1, 2*, MEI Ao-xue1, 2. Green Preparation of Biomass Carbon Quantum Dots for Detection of Cu2+[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 248-253. |
[9] |
XU Yi-fei, LIU Lu, SHI Shi-kao*, WANG Yue, PAN Yu-jing, MA Xing-wei. Spectroscopic Properties of Carbon Quantum Dots Prepared From Persimmon Leaves and Fluorescent Probe to Fe3+ Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2418-2422. |
[10] |
FEI Xue-ning*, ZHENG Yuan-jie, GU Ying-chun, LI Guang-min, ZHAO Hong-bin, ZHANG Bao-lian. Fluorescence Imaging and Chiral Specific Biological Recognition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3802-3807. |
[11] |
WANG Su-hui, ZHANG Xu, SUN Zhi-shen, YANG Jie, GUO Teng-xiao*, DING Xue-quan*. Methods of Detecting Multiple Chemical Substances Based on Near-Infrared Colloidal Quantum Dot Array and Spectral Reconstruction Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3370-3376. |
[12] |
ZHOU Zi-hao1, YANG Fan2, 3, LI Dong1, WANG Jian-ping2, 3, XU Jian-hua1*. pH Dependent Time-Resolved Fluorescence Spectra of ZnSe Quantum Dots Based on Glutathione Ligands[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3178-3183. |
[13] |
HU Jing-jing, TONG Chang-lun*. Study on the Interaction Between Carbon Quantum Dots and Human Serum Albumin by Spectroscopic Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1107-1113. |
[14] |
ZHANG Cong-cong1, LIU Lian-dong2, XIA Lei1, LI Xue3, ZHANG Xiao-kai1*. Preparation of ZnSe/ZnS Core-Shell Quantum Dots Under UV Irradiation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3409-3415. |
[15] |
ZHANG Qiu-lan, ZHU Zhi, WEN Zi-jian, NI Yong-nian. Interaction Between Graphene Quantum Dots and Trypsin With Spectroscopic and Chemometrics Approaches[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3141-3146. |
|
|
|
|