光谱学与光谱分析 |
|
|
|
|
|
Fluorescence and Visible Spectroscopic Studies on Interaction of β-Cyclodextrin-Thionine Inclusion Complex with DNA |
TONG Xiao-qing1,2,Lü Jian-quan1*,SUN Juan1,GONG Zhong-hong1 |
1. Hubei Key Laboratory of Bioanalytical Technology, Hubei Normal University, Huangshi 435002, China 2. Department of Chemistry, Central China Normal University, Wuhan 430079, China |
|
|
Abstract The inclusion of β-cyclodextrin (CD) for thionine (TH) and the interaction of DNA with CD-TH inclusion complex were investigated by fluorescence and visible absorption spectrometry. TH with β-CD formed a 1∶1 inclusion complex with the stability constant of 527 L·mol-1 (visible spectrometry)/444 L·mol-1 (fluorescence) in the pH 7.2 PBS buffer solutions. The addition of DNA makes the absorbance of the inclusion complex decrease and the absorption spectrum shift toward long wavelengths. The fluorescence experiments indicated that the presence of DNA makes the emission peak of CD-TH shift toward short wavelengths and the fluorescence of inclusion complex quench, and the quenching constant was calculated to be 6.12×104 L·mol-1 by Stern-Volmer method. All the data confirmed that CD-TH reacted with DNA in intercalative mode, and the binding numbers and the binding constant were estimated to be 1 and 3.47×104 L·mol-1 by spectrophotometry.
|
Received: 2006-08-08
Accepted: 2006-11-16
|
|
Corresponding Authors:
Lü Jian-quan
E-mail: jianquanlu@eyou.com
|
|
Cite this article: |
TONG Xiao-qing,Lü Jian-quan,SUN Juan, et al. Fluorescence and Visible Spectroscopic Studies on Interaction of β-Cyclodextrin-Thionine Inclusion Complex with DNA[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2007, 27(12): 2538-2541.
|
|
|
|
URL: |
https://www.gpxygpfx.com/EN/Y2007/V27/I12/2538 |
[1] Oliveira-Brett A M, Diculescu V C. Bioelectrochemistry, 2004, 64: 143. [2] Zhang N, Zhang X L, Zhao Y F. Talanta, 2004, 62: 1041. [3] DU Jiang-yan, HUANG Xiao-hua, XU Fei, et al(杜江燕, 黄晓华, 徐 飞, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25(9): 1435. [4] YE Xian-bao, LIU Ling-fang, QI Xiao-hua, et al(冶献保, 刘灵芳, 齐小花, 等). Journal of Analytical Science(分析科学学报), 2003, 19(1): 51. [5] DU Jiang-yan, HUANG Xiao-hua, XU Fei, et al(杜江燕, 黄晓华, 徐 飞, 等). Acta Phys. Chim. Sin.(物理化学学报), 2003, 19(11): 1064. [6] Rickus J L, Chang P L, Tobin A J, et al. J. Phys. Chem. B, 2004, 108: 9325. [7] Long X F, Tao X C, Wang Y Z, et al. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2004, 60(1-2): 455. [8] Xu Y, Yang L, Ye X Y, et al. Electroanalysis, 2006,18(9): 873. [9] Benesi H A, Hildebrand J H. J. Am. Chem. Soc., 1949, 17: 2703. [10] Chou J, Qu X G, Lu T H, et al. J. Microchem., 1995, 2: 159. [11] Pyle A M, Rehmamn J P, Meshoyrer R. J. Am. Chem. Soc., 1989, 111(8): 3051. [12] Kumar C V, Asuncion E H. J. Am. Chem. Soc., 1993, 115(19): 8547. [13] CHEN Guo-zhen, HUANG Xian-zhi, ZHENG Zhu-zi, et al(陈国珍, 黄贤智, 郑朱梓). Fluorescence Analysis(Second Edition)(荧光分析法, 第2版). Beijing: Science Press(北京: 科学出版社), 1990. 112. [14] Ware W R. J. Phys. Chem. 1962, 66: 455. [15] Gavin D R, Douglas J W, Mark A D. J. Am. Chem. Soc., 2001, 123: 6953. [16] Long E C, Barton J K. Accounts of Chemical Research, 1990, 23: 271. [17] CAO Ying, HE Xi-wen(曹 瑛, 何锡文). Chinese J. Anal. Chem.(分析化学), 1998, 26(10): 1165. [18] BIAN Wei, WEI Yu-xia, WEI Yan-li, et al(卞 伟, 魏玉霞, 魏艳丽, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006, 26(1): 125. |
[1] |
GUO Jing-fang, LIU Li-li*, CHENG Wei-wei, XU Bao-cheng, ZHANG Xiao-dan, YU Ying. Effect of Interaction Between Catechin and Glycosylated Porcine
Hemoglobin on Its Structural and Functional Properties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3615-3621. |
[2] |
ZHANG Xiao-dan1, 2, LIU Li-li1*, YU Ying1, CHENG Wei-wei1, XU Bao-cheng1, HE Jia-liang1, CHEN Shu-xing1, 2. Activation of Epigallocatechin Gallate on Alcohol Dehydrogenase:
Multispectroscopy and Molecular Docking Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3622-3628. |
[3] |
YANG Jing1, LI Li1, LIANG Jian-dan1, HUANG Shan1, SU Wei1, WEI Ya-shu2, WEI Liang1*, XIAO Qi1*. Study on the Interaction Mechanism Between Thiosemicarbazide Aryl Ruthenium Complexes and Human Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2761-2767. |
[4] |
YE Zi-yi, LIU Shuang, ZHANG Xin-feng*. Screening of DNA Dyes for Colorimetric Sensing Via Rapidly Inducing Gold Nanoparticles Aggregation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2805-2810. |
[5] |
ZHANG Ye-li1, 2, CHENG Jian-wei3, DONG Xiao-ting2, BIAN Liu-jiao2*. Structural Insight Into Interaction Between Imipenem and Metal β-Lactamase SMB-1 by Spectroscopic Analysis and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2287-2293. |
[6] |
HOU Qian-yi1, 2, DONG Zhuang-zhuang1, 2, YUAN Hong-xia1, 2*, LI Qing-shan1, 2*. A Study of the Mechanism of Binding Between Quercetin and CAV-1 Based on Molecular Simulation, Bio-Layer Interferometry and
Multi-Spectroscopy Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 890-896. |
[7] |
LI Jin-zhi1, LIU Chang-jin1, 4*, SHE Zhi-yu2, ZHOU Biao2, XIE Zhi-yong2, ZHANG Jun-bing3, JIANG Shen-hua2, 4*. Antiglycation Activity on LDL of Clove Essential Oil and the Interaction of Its Most Abundant Component—Eugenol With Bovine Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 324-332. |
[8] |
ZHANG Meng-jun1, LIU Li-li1*, YANG Xie-li2, GUO Jing-fang1, WANG Hao-yang1. Multispectral Analysis of Interaction Between Catechins and Egg Yolk Immunoglobulin and the Change of Bacteriostasis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2297-2303. |
[9] |
LIU Jiang-qing1, YU Chang-hui2, 3, GUO Yuan2, 3, LEI Sheng-bin1*, ZHANG Zhen2, 3*. Interaction Between Dipalmityl Phosphatidylcholine and Vitamin B2
Studied by Second Harmonic Spectroscopy and Brewster Angle
Microscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1484-1489. |
[10] |
LÜ Jia-nan, LI Jun-sheng*, HUANG Guo-xia, YAN Liu-juan, MA Ji. Spectroscopic Analysis on the Interaction of Chrysene With Herring Sperm DNA and Its Influence Factors[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 210-214. |
[11] |
ZHANG Chuan-ying1, PENG Xin1*, RAO Heng-jun2, QI Wei2, SU Rong-xin2, HE Zhi-min2. Spectroscopic Studies on the Interaction Between Salvianolic Acid B and Bovine Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1701-1707. |
[12] |
HU Jing-jing, TONG Chang-lun*. Study on the Interaction Between Carbon Quantum Dots and Human Serum Albumin by Spectroscopic Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1107-1113. |
[13] |
LUO Lin-lin1, 2, 3, NIU Jing-jing3, MO Bei-xin1, 2, LIN Dan-ying3, LIU Lin1, 2*. Advances in the Application of Förster Resonance Energy Transfer and Fluorescence Lifetime Imaging Microscopy (FRET-FLIM) Technique in Life Science Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1023-1031. |
[14] |
ZHANG Lu1, XU Liang1, TU Zong-cai1, 2*, ZHOU Qi-ming1, ZHOU Wen-na1. Mechanism of Isoquercitrin Inhibiting Advanced Glycation Products Formation Based on Fluorescence Spectroscopy Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3755-3760. |
[15] |
YE Jia-wen1, CHANG Jing-jing1*, GENG Yi-jia2, CUI Yuan1*, XU Shu-ping2, XU Wei-qing2, CHEN Qi-dan3. Detection of I- in Water by the Hg2+@CDs Fluorescent Sensor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3489-3493. |
|
|
|
|