光谱学与光谱分析 |
|
|
|
|
|
The Study of Photo-Elastic Modulator-Based Fourier Transform Spectroscopy |
CHEN You-hua1, WANG Zhao-ba1,2, WANG Zhi-bin1,2, WANG Yan-chao1, LI Yong-shuai1, ZHANG Yu-han1 |
1. Engineering Technology Research Center of Shanxi Province for Opto-Electronic Information and Instrument, Taiyuan 030051, China 2. Key Lab of Instrumentation Science & Dynamic Measurement (North University of China), Ministry of Education, Taiyuan 030051, China |
|
|
Abstract In order to enhance the spectrum resolution of current photo-elastic modulator-based Fourier transform spectrometer, a multi-reflected photo-elastic modulator-based interferometer structure was proposed in the present paper. Through coating reflecting film alternatingly on the photo-elastic crystal and light oblique incidence, and allowing the incident ray to have the multi-reflection in the crystal and exit from the other side of the crystal, the authors increased the light propagation distance in the crystal and enhanced the optical path difference at last. Based on this, the function of interference-spectrum retrieval was established, the optical system matched to the multi-reflected PEM-based interferometer was designed, and finally, the experimental system of multi-reflected PEM-based Fourier transform spectroscopy for telemetry was established. The principle of verification tests by using 671 nm laser and xenon lamp shows that the interferogram was clear and stable, and the feasibility of the principle of the system was verified. The expected result shows that the spectrum resolution of the designed PEM-FTs with multi-reflection achieved 13 cm-1, and its luminous flux just didnt reduce too much, which ensured the SNR. Through spectral inversion of the interference fringes, the technical feasibility of the spectrum system developed was verified. This work established the basic condition of prototype fabrication, radiation precise calibration, spectral calibration and instrument signal-to-noise ratio test and so on.
|
Received: 2013-04-11
Accepted: 2013-10-20
|
|
Corresponding Authors:
CHEN You-hua
E-mail: chenyh110512@163.com
|
|
[1] Buican T N, Carrieri A H. Proceedings for the Army Science Conference (24th) Semitoic Engineering Associates LLC Albuquerqe NM. USA, 2004. [2] Low M J D. Naturwissenschaften, 1970, 57(6): 280. [3] Padgett M J, Harvey A R. Review of Scientific Instruments, 1995, 66(4): 2807. [4] Patterson B A, Antoni M, Courtial J, et al. Optics Communications, 1996, 130(1): 1. [5] Persky M J. Review of Scientific Instruments, 1995, 66(10): 4763. [6] Griffiths P, De Haseth J A. Fourier Transform Infrared Spectrometry. Wiley-Interscience, New York: Wiely, 2007. [7] James C Kemp. Journal of The Optical Society of America, 1969, 59(8): 950. [8] Carrieri A H, Barditch I F, Owens D J, et al. Tactical Thermal Luminescence Sensor for Ground Path Contamination Detection, U.S. Patent, 6464392. 2002-10-5. [9] Buican T N. Apparatus and Method for Measuring Fluorescence Intensilies at a Plurallty of Wavelengths and Lifetimes, U.S. Patent, 5208651. 1993. [10] Bammer F, Petkovsek R. Opt. Express, 2007, 15(10): 6177. [11] Buican T N. Vibrational Spectroscopy, 2006, 42(1): 51. [12] Buican Tudor N. High Retardation-Amplitude Photoelaslic Modulalor U.S. Patent, 7764415. 2010. [13] Wang Baoliang, List Jennifer. Proc. of SPIE, 2005, 5888: 436. [14] Buican Tudor N. Vibrational Spectroscopy, 2006, 42(1): 51. |
[1] |
DU Guo-jun, ZHANG Yu-gui, CUI Bo-lun, JIANG Cheng, OU Zong-yao. Spectral Calibration of Hyperspectral Monitor (HSM) on Carbonsat[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1556-1562. |
[2] |
XIE Ying-ke1, 2, WANG Xi-chen2, LIANG Heng-heng2, WEN Quan3. A Near-Infrared Micro-Spectrometer Based on Integrated Scanning
Grating Mirror and Improved Asymmetric C-T Structure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 563-568. |
[3] |
ZHU Xiao-ming1, 2, 3, BAI Xian-yong1, 2, 3*, LIN Jia-ben1, 2, DUAN Wei1, 2, ZHANG Zhi-yong1, 2, FENG Zhi-wei1, 2, DENG Yuan-yong1, 2, YANG Xiao1, 2, HUANG Wei1, 2, 3, HU Xing1, 2, 3. Design and Realization of High-Speed Acquisition System for Two Dimensional Fourier Transform Solar Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3842-3850. |
[4] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[5] |
CHEN Yu1, WEI Yong-ming1, WANG Qin-jun1,2*, LI Lin3, LEI Shao-hua4, LU Chun-yan5. Effects of Different Spectral Resolutions on Modeling Soil Components[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 865-870. |
[6] |
CHEN Fang, GAO Chao, BAI Jie. Thickness Matching Design Between Splitter and Compensatorfor High Spectral Resolution Fourier Transform Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3941-3945. |
[7] |
LI Zhi-wei1, 2, SHI Hai-liang1, 2, LUO Hai-yan1, 2, XIONG Wei1, 2*. Study on the Relationship Between Apodization Function and Signal-to-Noise Ratio of Hyperspectral Spatial Interferogram[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(01): 29-33. |
[8] |
HAO Li-hua1,2, LU Xiao-dong2, WANG Ming-quan1,2. Research on a Novel Static Imaging Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2971-2975. |
[9] |
LIU Lu1,2,3, CHEN Yuan-yuan1,2,3*, ZHANG Rui1,2,3, WANG Zhi-bin1,2,3, XUE Peng1,3, LI Xiang2. Study on 0 Level Interference Suppression Method for Hyperspectral Imaging Based on AOTF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3182-3186. |
[10] |
ZHENG Zhi-zhong1,2, YANG Zhong1*, XIU Lian-cun2, DONG Jin-xin2, CHEN Chun-xia2, GAO Yang2, YU Zheng-kui2. Design of a SWIR Offner Imaging Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(07): 2267-2272. |
[11] |
ZHENG Lian-hui1,2,3,4, RAO Chang-hui1,2*, GU Nai-ting1,2, QIU Qi4 . The Aberration Corrected Grating Spectrometer Based on Adaptive Optics [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(12): 4088-4093. |
[12] |
LI Zhi-wei1, 2, 3, XIONG Wei1, 3*, SHI Hai-liang1, 3, LUO Hai-yan1, 3, QIAO Yan-li1, 3 . Study on Asymmetric Spatial Heterodyne Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(07): 2291-2295. |
[13] |
XIE Pei-yue1, 2, YANG Jian-feng1, XUE Bin1*, Lü Juan1, HE Ying-hong1, LI Ting1, MA Xiao-long1 . Research on an Equal Wavelength Spectrum Reconstruction Method of Interference Imaging Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(03): 848-852. |
[14] |
YANG Zeng-peng1, 2, TANG Yu-guo1, Bayanheshig1, CUI Ji-cheng1, YANG Jin1 . Research on Small-Type and High-Spectral-Resolution Grating Monochromator[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(01): 273-278. |
[15] |
ZHAO Bao-wei1, XIANGLI Bin1, 2, CAI Qi-sheng3, Lü Qun-bo2*, ZHOU Jin-song2 . Fourier Transform Spectrometer Based on Rotating Parallel-Mirror-Pair [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(11): 3209-3213. |
|
|
|
|