光谱学与光谱分析 |
|
|
|
|
|
Nondestructive Recognization of Mountain Cultivated Ginseng and Garden Cultivated Ginseng by FTIR Microspectroscopy |
BU Hai-bo1, WANG Feng2, LIN Hong-ying1, GUO Zhi-yong1, YUAN Shao-xiong1, PAN Li-li1,XU Xiao-jia1, LI Xiang-ri1*, WANG Gang-li2*, LIN Rui-chao1, 2 |
1. School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China 2. National Institutes for Food and Drug Control, State Food and Drug Administration, Beijing 100050, China |
|
|
Abstract Fourier transform infrared (FTIR) microspectroscopy technology is the combination of the FTIR spectrometer and the microscope. This technology is of simple preparation of the samples, can be used in micro-area analysis and micro-samples, and reflect the nature of the samples spectra. Panax ginseng include mountain cultivated ginseng (MCG), garden cultivated ginseng (GCG) and mountain wild ginseng (MWG), but the excavation of MWG is prohibited in China. So, only MCG and GCG were collected and recorded in Chinese pharmacopoeia. In this study, we developed a discriminant analysis (DA) method for recognition of MCG and GCG using FTIR microspectroscopy technology. Twenty MCG samples and twenty four GCG samples were obtained, and their spectra of IR microspectroscopy were collected. Then 33 samples were randomly selected into calibration set and the remaining 11 of the samples were selected into validation set. The authors optimized the pretreatment method, the principal components, the modeling region and the scanning parts when developing the models. The optimized model of discriminant analysis was developed using the pretreatment multiplicative scatter correction (MSC)+Savitzky-Golay filter (SG) smoothing, the region 3 932.14~669.18 cm-1, 4 principal components and the rhizome part. The accuracy of the optimized model got up to 100%. The result demonstrated that infrared microspectroscopy technology combined with DA is of simple operation, rapid, nondestructive and effective, and can be applied to recognize MCG and GCG.
|
Received: 2013-02-27
Accepted: 2013-05-12
|
|
Corresponding Authors:
LI Xiang-ri, WANG Gang-li
E-mail: lixiangri@sina.com;duneer@126.com
|
|
[1] Chinese Pharmacopoeia Commission(国家药典委员会). Pharmacopoeia of the People’s Republic of China(中华人民共和国药典), VolumeⅠ(一部). Beijing: Chinese Medicine Science and Technology Press(北京:中国医药科技出版社), 2010. [2] Kim N D, Kim E M, Kang K W, et al. British Journal of Pharmacology, 2003, 140(4): 661. [3] Tian Jingwei, Fu Fenghua, Geng Meiyu, et al. Neuroscience Letters, 2005, 374(2): 92. [4] Liao Baisong, Newmark Harold, Zhou Renping. Experimental Neurology, 2002, 173(2): 224. [5] Lee Myoung-Su, Hwang Jin-Taek, Kim Soon-hee, et al. Journal of Ethnopharmacology, 2010, 127(3): 771. [6] Kang K S, Kim H Y, Yamabe N, et al. Free Radical Research, 2007, 41(10): 1181. [7] Hofseth L J, Wargovich M J. The Journal of Nutrition, 2007, 137(1): 183S. [8] Nicola Fuzzati. Journal of Chromatography B, 2004, 812(1-2): 119. [9] Shi Wei, Wang Yutang, Li Juan, et al. Food Chemistry, 2007, 102(3): 664. [10] Ami D, Natalello A, Zullini A, et al. FEBS Letters, 2004, 576(3): 297. [11] Ryan J Schexnaydre, Brian S Mitchell. Materials Letters, 2007, 61(11-12): 2151. [12] Movasaghi Z, Rehman S, Ur Rehman D I. Applied Spectroscopy Reviews, 2008, 43(2): 134. [13] XU Rong, SUN Su-qin, LIU You-gang, et al(徐 荣,孙素琴,刘友刚,等). Chinese Journal of Analytical Chemistry(分析化学), 2009,37(2): 221. [14] Linda M Reid, Colm P O’Donnell, Gerard Downey. Trends in Food Science & Technology, 2006, 17(7): 344. |
[1] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[2] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[3] |
JIA Hao1, 3, 4, ZHANG Wei-fang1, 3, LEI Jing-wei1, 3*, LI Ying-ying1, 3, YANG Chun-jing2, 3*, XIE Cai-xia1, 3, GONG Hai-yan1, 3, DING Xin-yu1, YAO Tian-yi1. Study on Infrared Fingerprint of the Classical Famous
Prescription Yiguanjian[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3202-3210. |
[4] |
CHEN Wan-jun1, XU Yuan-jie2, LU Zhi-yun3, QI Jin-hua3, WANG Yi-zhi1*. Discriminating Leaf Litters of Six Dominant Tree Species in the Mts. Ailaoshan Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2119-2123. |
[5] |
HAN Xiao-long1, LIN Jia-sheng2, LI Jian-feng2*. SERS Analysis of Urine for Rapid Estimation of Human Energy Intake[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 489-494. |
[6] |
LI Xiao1, CHEN Yong2, MEI Wu-jun3*, WU Xiao-hong2*, FENG Ya-jie1, WU Bin4. Classification of Tea Varieties Using Fuzzy Covariance Learning
Vector Quantization[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 638-643. |
[7] |
GUO Xiao-hua1, ZHAO Peng1, WU Ya-qing1, TANG Xue-ping3, GENG Di2*, WENG Lian-jin2*. Application of XRF and ICP-MS in Elements Content Determinations of Tieguanyin of Anxi and Hua’an County, Fujian Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3124-3129. |
[8] |
HUANG Hua1, NAN Meng-di1, LI Zheng-hao1, CHEN Qiu-ying1, LI Ting-jie1, GUO Jun-xian2*. Multi-Model Fusion Based on Fractional Differential Preprocessing and PCA-SRDA for the Origin Traceability of Red Fuji Apples[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3249-3255. |
[9] |
HONG Zi-yun1, 2, YAN Cheng-lin2, MIN Hong2, XING Yan-jun1*, LI Chen2, LIU Shu2*. Research on Coal Species Identification Based on Near-Infrared
Spectroscopy and Discriminant Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2800-2806. |
[10] |
DAI Lu-lu1, YANG Ming-xing1, 2*, WEN Hui-lin1. Study on Chemical Compositions and Origin Discriminations of Hetian Yu From Maxianshan, Gansu Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1451-1458. |
[11] |
TAN Yang1, WU Xiao-hong2, 3*, WU Bin4, SHEN Yan-jun1, LIU Jin-mao1. Qualitative Analysis of Pesticide Residues on Chinese Cabbage Based on GK Improved Possibilistic C-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1465-1470. |
[12] |
LI Jia-yi1, YU Mei1, LI Mai-quan1, ZHENG Yu2*, LI Pao1, 3*. Nondestructive Identification of Different Chrysanthemum Varieties Based on Near-Infrared Spectroscopy and Pattern Recognition Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1129-1133. |
[13] |
SUN Xue-hui1, ZHAO Bing2, LUO Zhen2, SUN Pei-jian1, PENG Bin1, NIE Cong1*, SHAO Xue-guang3*. Design and Application of the Discrimination Filter for Near-Infrared Spectroscopic Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 399-404. |
[14] |
CHEN Feng-xia1, YANG Tian-wei2, LI Jie-qing1, LIU Hong-gao3, FAN Mao-pan1*, WANG Yuan-zhong4*. Identification of Boletus Species Based on Discriminant Analysis of Partial Least Squares and Random Forest Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 549-554. |
[15] |
ZHONG Yuan, QU Meng-wen, Andy Hsitien Shen*. Comparison of Chemical Composition and Spectroscopy of Purple- Brownish Red Garnet From Zambia, Tanzania and Australia[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 184-190. |
|
|
|
|