光谱学与光谱分析 |
|
|
|
|
|
Synthesis and Photodynamic Anticancer Activity of Silicon Phthalocyanine Axially Modified by Nucleoside Derivatives |
SHEN Xiao-min, ZHENG Bi-yuan, ZHANG Han-hui, HUANG Jian-dong* |
College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108, China |
|
|
Abstract A new axially modified silicon phthalocyanine, di [5′-(2′, 3 ′-O-isopropyl)-5-methyl cytidineoxy] silicon phthalocyanine (SiPcG), was prepared and characterized by 1H NMR and HRMS. This compound is essentially nonaggregated in N,N-dimethyformamide and 1% cremophor EL aqueous solution. It shows a Q-band at 676 nm and fluorescence emission at 685 nm in DMF, and exhibits a Q-band at 679 nm and fluorescence emission at 689 nm in 1% cremophor EL aqueous solution. The SiPcG shows a high photodynamic activity against human hepatoma cells HepG2 with an IC50 value down to 7.8×10-8mol·L-1. Fluorescence confocal microscopy study indicated that the SiPcG locates preferentially in the mitochondria of cells. The research results show that the SiPcG is highly potential as a new anti-cancer photosensitizer.
|
Received: 2013-01-21
Accepted: 2013-04-21
|
|
Corresponding Authors:
HUANG Jian-dong
E-mail: jdhuang@fzu.edu.cn
|
|
[1] Dolmans D E, Fukumura D, Jain R K, et al. Nature. Rev. Cancer, 2003, 3: 380. [2] Detty M R, Gibson S L, Wagner S J, et al. J. Med. Chem., 2004, 47: 3897. [3] Allen C M, Sharman W M, Vanlier J E, et al . J. Porphyr. Phthalocya., 2001, 5∶ 161. [4] MacDonald I J, Dougherty T J. J. Porphyr. Phthalocya., 2001, 5: 105. [5] Jiang X J, Yeung S L, Lo P C, et al. J. Med. Chem., 2011, 54: 320. [6] Farooq F T, Berlin J, Baron E, et al. Castrointest. Endosc., 2007, 65∶147. [7] Jiang X J, Huang J D, Zhu Y J, et al. Bioorg. Med. Chem. Lett., 2006, 16: 2450. [8] Vhet-Boudou V, Didierjean J, Isel C, et al. Cell Mol. Life Sci., 2006, 63(2)∶163. [9] Galmarini C M, Graham K, Thomas X, et al. Blood, 2001, 98(6): 1922. [10] Lowery M K, Starshark A J, Esposito J N. Inorg Chem., 1965, 4(1): 128. [11] Scalise I, Durantini E N. Bioorg. Med. Chem., 2005, 13: 3037. [12] Ke M R, Huang J D, Weng S M, et al. J. Photochem. Photobiol. A, 2009, 201: 23. [13] LUO Zhi-wei,ZHANG Yi-wei, LIN Dong-en(罗枝伟, 张逸伟, 林东恩). Chemistry Online(化学通报), 2006, 6: 454. [14] Li X Y, He X, Ng D K P, et al. Macromolecules 2000, 33: 2119. [15] Oleinick N L, Morris R L, Belichenko I, et al. Photochem. Photobiol. Sci., 2002, 1:1. [16] Zhao Z X, Chan P S, Li H G, et al. Inorg. Chem., 2012, 51: 812. |
[1] |
WANG Yan-ru, TANG Hai-jun*, ZHANG Yao. Study on Infrared Spectral Detection of Fuel Contamination in Mobil Jet Oil II Lubricating Oil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1541-1546. |
[2] |
YANG Yan-ling1, Andy Hsitien Shen1, FAN Yu-rong2, HUANG Wei-zhi1, PEI Jing-cheng1*. UV-Vis-NIR Spectroscopic Characteristics of Vanadium-Rich
Hydrothermal Synthetic Emeralds From Russia[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1199-1203. |
[3] |
ZHANG Jia-lin, ZHANG Qian, PEI Jing-cheng*, HUANG Wei-zhi. Gemological and Spectroscopy Characteristics of Synthetic Blue-Green Beryl by Hydrothermal Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2258-2262. |
[4] |
WANG Chong1, MO Jian-ye1,2, LI Dong-dong1, SHE Jiang-bo2, LIU Zhen2. Application and Research of NaYF4∶Yb3+/Eu3+ Upconverting Luminescent Micro-Nano Particles in Anti-Counterfeiting Identification[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1525-1529. |
[5] |
ZHANG Meng-jie, CAO Si-min, WANG Meng-yu, LI Hao-yang, LI Dong, ZHAO Ze-nan, XU Jian-hua*. Fluorescence Enhancement and Conformational Studies of Coenzyme NADH With Aluminum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 997-1003. |
[6] |
XIE Wen-jing, WANG Jing-jing, LIU Ying, DING Zhou, LIU Ying*. Study on the Fluorescence Emission Characteristics and Change Mechanism of Polysaccharide on White Blood Cell[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1050-1054. |
[7] |
WANG Shi-xia, HU Tian-yi, YANG Meng. Study on Preparation of Ag-Doped ZnO Nanomaterials and Phase Transition at High Pressure Using Diamond Anvil Cell and Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 484-488. |
[8] |
WANG Zhi-wei1, 2, 3, YUE Guang-yang1*, WU Xiao-dong1, ZHANG Wen2, WANG Pu-chang2, SONG Xue-lian2, WU Jia-hai2. A Study on Ground Deformations Monitoring in Tianshan Mountain of Xinjiang on Active Microwave Spectral Imagines[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2366-2372. |
[9] |
XIONG Yang1,2, XU Jun1,2, QIU Su-yan1,2, WEI Yi-hua1,2, ZHANG Jin-yan1,2*. Study on Interaction Between Phenylethanolamine A and CdTe Nanomaterials by Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1402-1406. |
[10] |
WANG Meng-xin 1,2, LUO A-li1,2. Spectral Analysis of Host Galaxy from Possible Dual AGNs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(01): 290-293. |
[11] |
TAN Guan-ni1, GAO Hong1,2*, SONG Jie3, SHANG Shi-bin1,2, SONG Zhan-qian1,2. Synthesis, Spatial Configuration and Spectral Properties of Donor-Acceptor Molecules with Dehydroabietic Acid Triarylamine as Donors[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(07): 2083-2090. |
[12] |
LIANG Rong1, LAN Yan1, 2, ZHANG Tian-yang2, LU Tai-jin3, CHEN Mu-yu1, WANG Xiao-qing1, ZHANG Xiao-hu1. Multi-Spectroscopy Studies on Large Grained HPHT Synthetic Diamonds from Shandong, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(06): 1840-1845. |
[13] |
DONG Xue1, QI Li-jian2, ZHOU Zheng-yu2, SUN Dui-xiong1*. Spectral Characteristics and Application of Synthetic Hydrothermal Red Beryl[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(02): 517-521. |
[14] |
SUN Yan-wen1, CHANG Yu2, JIN Yu-fen1, XIE Wen-bing2, CHANG Jing1, YU Ting1*, PAN Li-hua2. Study of Synthesis and Spectral Property of Europium Cryptate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2189-2193. |
[15] |
LIU Jun-shao1, HUANG Lei2, XIE Wen-ju1, LIN Hao1, CHEN Yi-ping2, PAN Hai-bo2*. Preparation of Four Phenoxy Phthalocyanine Zinc/ZnO Composites with in-situ Method by DBU Liquid Phase Catalyst and Its Photocatalytic Selectivity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1486-1491. |
|
|
|
|